-
损伤部位的机械刺激和局部感染可导致皮肤伤口的异常愈合,甚至导致瘢痕疙瘩的形成[1]。细胞的迁移、生长和增殖在伤口修复过程中起着至关重要的作用, 增生性瘢痕的形成与各类因子表达异常、成纤维细胞的增殖过度、以及胶原的过度沉积等因素密切相关[2-3]。电生理学实验研究表明,生物组织的行为与电荷的流动高度相关[4-6]。
驻极体是一类不需外加电源即能够提供稳定静电场和微电流的功能电介质材料[7], 其产生的静电场能够加快受创部位微循环,促进成纤维细胞在不同时期生长或凋亡以及促进药物的经皮渗透等作用[8-10]。 5-氟尿嘧啶(5-FU)是最早研发上市的抗癌药,作用于细胞后抑制其 DNA的合成,从而对成纤维细胞生长增殖产生影响,临床上是治疗难治性瘢痕的常用药之一[11]。
该研究将驻极体和 5-FU 联用,通过探索驻极体静电场联合5-FU对分离培养瘢痕成纤维细胞的生长、细胞周期和凋亡的影响,以期在细胞水平研究驻极体静电场以及驻极体联用 5-FU 对瘢痕形成的影响机制,为预防和治疗病理瘢痕提供新的思路。
-
Sprague-Dawley(SD)大鼠,雌雄不限,体质量为(180±20) g,购自海军军医大学实验动物中心,动物合格证号:SCXK(沪)2018-0006。
-
水合氯醛(中国医药集团化学试剂有限公司);5-FU(上海生物工程有限公司);cck-8 试剂盒[东仁化学科技(上海)有限公司];Hoechst33342(上海如吉生物科技发展有限公司);引物(武汉擎科创新生物科技有限公司);细胞培养箱(Thermo公司);栅控恒压电晕充电系统( 复旦中学校办厂);ESR102A 型振动电容静电计(北京华晶汇科技有限公司);荧光定量 PCR 仪(ABI公司); 全自动定量酶标仪(Bio-Rad公司)。
-
通过栅控恒压电晕充电系统对双裸面聚丙烯(Polypropylene,PP) 膜进行注极,栅压设为+5000 V,充电时间为 5 min,制备得+5000 V 驻极体。驻极体等效表面电位通过表面电位计(ESR102A 型振动电容静电计)测量。
-
用 10%的水合氯醛腹腔注射麻醉(4 ml/kg),用实验动物剃毛刀去除大鼠背部毛发, 在大鼠背部用打孔器制造左右对称共 4 个直径为 2 cm 的创面,创面之间间隔一定距离,去除肉膜层,分笼饲养。在创面形成后 4 周产生增生性瘢痕。
-
取瘢痕模型大鼠,10%的水合氯醛腹腔注射麻醉, 用实验动物剃毛刀将大鼠背部毛发去除干净, 酒精棉球擦拭后, 手术剪取下瘢痕皮肤组织,组织用含有青霉素浓度 100 U/ml,链霉素浓度 100 μg/ml 的 PBS 缓冲液反复冲洗 3 次。冲洗后, 用眼科剪将瘢痕皮肤组织剪成组织小块, 组织小块大小在 1~2 mm3 之间。将组织小块置于培养皿中,加入含有 20%胎牛血清的 1640培养基,待细胞长满培养皿,进行细胞传代,待细胞传至 3~8 代,进行后续实验。
-
实验分为瘢痕细胞对照组,+5000 V驻极体组,+5000 V驻极体+10 μg/ml 5-FU组,+5000 V驻极体+40 μg/ml 5-FU组,+5000 V驻极体+160 μg/ml 5-FU组。
-
取对数生长期的瘢痕皮肤组织成纤维细胞(细胞密度为 1×104/ 孔),接种于96孔培养板中(100 μl/孔) 。待细胞绝大部分贴壁后,更换培养液,按照上述实验分组分别对细胞干预24 h、48 h、72 h,再以 10 μl/孔向各孔中加入 cck-8 试剂溶液, 继续在细胞培养箱中保温 1~4 h,终止培养,震荡摇匀,在全自动定量酶标仪上以 450 nm 波长处测定各孔吸光度, 按照增殖率=(实验孔实测值−空白组平均值)/(对照组平均值−空白组平均值)×100%计算细胞增殖率。
-
取瘢痕细胞消化离心后重悬,制成单细胞悬液,按1×104个/孔种植到96孔板中,待细胞绝大部分贴壁后,更换培养基,选取+5000 V驻极体+40 μg/ml 5-FU组对其进行处理,恒温箱培养48 h后,去除培养液,各组均加入含Hoechst 33342(原浓度为10 mg/ml,稀释10000倍)的1640培养液,避光孵育30 min,然后去除培养液,用PBS清洗两次,加入适量PBS,置于荧光显微镜下观察并拍照,每组重复3个样本。荧光定量PCR引物序列表见表1。
表 1 荧光定量 PCR 引物序列表
引物名称 引物序列(5'→3') 片段长度(bp) 退火温度(℃) R-TP53-S GAAGCCCTCCAAGTGTCAGC 220 60 R-TP53-A GGCAGAACAGCTTATTGAGGGA 60 R-fas-S AGCGTTCGTGAAACCGACAAC 172 60 R-fas-A AGTGTTTCCTGTCCGTGTACTCC 60 R-fasl-S GCAAATAGCCAACCCCAGCAC 186 60 R-fasl-A ACGAAGTACAACCCAGCCTCA 60 R-BAX-S GGGCCTTTTTGCTACAGGGTTT 284 60 R-BAX-A AGCAAAGTAGAAAAGGGCAACCAC 60 R-GAPDH-S CTGGAGAAACCTGCCAAGTATG 138 60 R-GAPDH-A GGTGGAAGAATGGGAGTTGCT 60 -
瘢痕细胞在不同浓度5-FU及正极性驻极体和不同浓度5-FU联用干预 24 h、48 h、72 h后增殖率变化情况:在5-FU干预 24 h、48 h、72 h后,在不同浓度5-FU的作用下, 随着 5-FU浓度的增加,瘢痕细胞的增殖率呈下降趋势,且随着时间的增加瘢痕增值下降趋势越明显;正极性驻极体和不同浓度5-FU联用作用于细胞72 h后,细胞增殖率都有所降低。随着 5-FU 浓度的增加, 对照组和各正极性驻极体组瘢痕细胞增殖率呈下降趋势;该变化趋势较5-FU单一作用 72 h组更加明显,具体见表2。
表 2 不同浓度5-FU 及正极性驻极体和不同浓度5-FU联用对瘢痕细胞生长的影响(单位:μg/ml,n=12)
组别 0 10 40 160 24 h组 1.00±0.028 0.99±0.028 0.77±0.027 0.49±0.033 48 h组 1.00±0.024 0.98±0.025 0.65±0.028 0.41±0.028 72 h组 1.00±0.020 0.96±0.033 0.53±0.017 0.21±0.046 +5000 V与5-FU联用72 h组 0.90±0.034 0.47±0.051 0.15±0.051 -
瘢痕细胞各组染色的结果见图1,图中箭头所示亮点为凋亡细胞,较暗的蓝色荧光为正常细胞,图1A右上角方框内为亮点部位放大结果。结果显示:瘢痕细胞对照组基本无细胞凋亡或者极少细胞凋亡; +5000 V驻极体组出现少数细胞凋亡; +5000 V 驻极体与5-FU联用组细胞凋亡数高于 5-FU 组。
-
瘢痕成纤维细胞各组凋亡基因 mRNA 的相对表达量见表3。以对照组为 1,比较各实验组mRNA 的表达。结果显示:与对照组相比,5-FU组表达量明显增加, +5000 V 驻极体组4种凋亡基因 mRNA 的相对表达量都有所增加;与5-FU组相比,虽然+5000 V驻极体组相对表达量稍小,但是+5000 V驻极体+5-FU组表达量则显著增大,以上相比较的各组之间差异均有统计学意义(P<0.05)。
表 3 不同实验组作用于瘢痕成纤维细胞后p53、fas、Bax和fasl mRNA的表达水平(平均值±SD,n=3)
组别 p53 fas Bas fasl 对照组 1.00±0.00 1.00±0.01 1.00±0.02 1.00±0.03 5-FU组 1.60±0.06 2.23±0.11 1.81±0.13 2.01±0.19 +5000 V 驻极体组 1.30±0.10 1.61±0.21 1.41±0.10 1.50±0.12 +5000 V+5-FU组 1.92±0.14 2.81±0.29 2.20±0.17 2.49±0.21 -
细胞的增殖和凋亡状况能够从细胞层面反应组织的生长状况[12]。实验结果表明:不同浓度的5-FU对瘢痕细胞的生长有不同的抑制作用,随着化学药物浓度的增加,瘢痕细胞的增值率降低更迅速。+5000 V驻极体与5-FU联用,对细胞的增殖有协同抑制作用,正极性驻极体和不同浓度5-FU联用作用于细胞72 h后,细胞增殖率均较5-FU单一作用于瘢痕细胞72 h的细胞增值率有所降低。且随着联合作用组5-FU浓度的增加,其抑制细胞增殖率作用更加明显,经+5000 V驻极体与160 μg/ml 5-FU联用72 h,对瘢痕细胞的抑制率可达0.15±0.051。
细胞凋亡检测实验也表明,由于驻极体静电场的作用,使瘢痕细胞凋亡数量增加,+5000 V驻极体组凋亡细胞增多,+5000 V驻极体与5-FU联用组细胞凋亡数高于5-FU组。p53、Fas、Fasl、Bax 4种基因的表达结果也证明+5000 V 驻极体能够通过一定程度的影响该4种基因的表达来促进细胞凋亡,抑制细胞生长,这与前期凋亡实验结果一致。
正极性驻极体及与5-FU的协同抑制瘢痕细胞生长作用,这可能与细胞膜所带内负外正电荷有关。有研究表明, 细胞表面电荷的分布能够影响细胞生长,驻极体产生的静电场影响了细胞膜表面的电荷分布,进而改变了膜蛋白的生物学功能和细胞膜的泵功能,同时,电场产生的微电流会影响细胞的代谢和基因表达, 从而影响细胞的分裂、增殖[13-15]。正极性驻极体产生的静电场可能通过影响细胞膜表面的电荷量, 使得细胞生长受到抑制,增殖率降低,正极性驻极体与 5-FU 联用,能够增强 5-FU 对两种细胞增殖的抑制作用,起到协同作用。
该研究通过提取大鼠正常皮肤及瘢痕皮肤成纤维细胞,通过细胞学实验,考察了正极性驻极体与 5-FU 及其联用对大鼠瘢痕皮肤成纤维细胞在细胞生长、增殖、以及凋亡等方面的影响, 并结合凋亡基因的检测,探究了正极性驻极体与 5-FU 及其联用抑制增生性瘢痕生长的机制,证实了驻极体与 5-FU 及其联用可能是通过影响细胞的生长状态进而影响增生性瘢痕的生长。展示了正极性驻极体与 5-FU 联用取得的更好的治疗增生性瘢痕的效果,为增生性瘢痕的治疗提供了一个发展的方向。
Synergistic effect of positive electret combined with 5-fluorouracil on growth inhibition of scar fibroblasts
-
摘要:
目的 探讨驻极体及5-氟尿嘧啶(5-FU)对瘢痕成纤维细胞生长的影响及其可能的作用机制。 方法 利用全自动酶标仪检测+5000 V驻极体联合不同浓度5-FU对瘢痕成纤维细胞增殖的影响,利用荧光显微镜及RT- PCR技术研究在静电场作用下的瘢痕成纤维细胞的凋亡及p53等凋亡基因mRNA的表达变化。 结果 ①正极性驻极体和不同浓度5-FU联用作用于细胞72 h后,细胞增殖率都有所降低,+5000 V驻极体+160 μg/ml 5-FU组对瘢痕细胞的抑制率达到(0.15±0.051)%。② +5000 V 驻极体组可促进瘢痕成纤维细胞凋亡; +5000 V 驻极体与 5-FU联用组细胞凋亡数高于 5-FU 单一使用组。③ +5000 V 驻极体作用组,4种凋亡基因 mRNA 的相对表达量都有所增加, +5000 V 驻极体与 5-FU 联合作用组4种标志性基因表达量均较 5-FU 组增大。 结论 正极性驻极体与5-FU联合作用对抑制细胞生长有协同作用。正极性驻极体抑制瘢痕细胞生长的机制可能是通过促进细胞凋亡基因的表达,进而影响细胞的生长状态来抑制细胞生长。 Abstract:Objective To investigate the effects and possible mechanism of electret and 5-fluorouracil(5-FU)on the growth of scar fibroblasts. Methods The effect of +5000 V electret combined with different concentrations of 5-FU on the proliferation of scar fibroblasts was detected by automatic enzyme labeling instrument. The apoptosis of scar fibroblasts and the mRNA expression of p53 and other apoptotic genes were studied by fluorescence microscopy and RT-PCR technology under the action of electrostatic field. Results ① After the treatment of positive electret and different concentrations of 5-FU for 72 h, the cell proliferation rate decreased, and the inhibition rate of scar cells in the +5000 V electret+160 μg/ml 5-FU group was (0.15±0.051)%. ②+5000 V electret group could promote the apoptosis of scar fibroblasts; The number of apoptotic cells in +5000 V electret and 5-FU group was higher than that in 5-FU group. ③The mRNA expression levels of four apoptotic genes in the +5000 V electret group were increased, and the expression levels of four signature genes in the +5000 V electret and 5-FU group were increased compared with those in the 5-FU group. Conclusion The combination of positive electret and 5-FU had a synergistic effect on inhibiting cell growth. The mechanism of positive electret inhibiting scar cell growth may be through promoting the expression of apoptosis gene, and then affecting the growth state of cells to inhibit cell growth. -
Key words:
- electrostatic field /
- electret /
- 5-fluorouracil /
- scar fibroblasts
-
结直肠癌(CC)发生率占所有肿瘤发生率的第3位,病死率仅次于肺癌,属于下消化系统恶性肿瘤[1]。目前,结肠癌的治疗主要采用多学科的综合治疗模式[2]。包括5-氟尿嘧啶、奥沙利铂与贝伐珠单抗等的组合[3-5]。然而,这些常规的化疗方案可能造成患者不耐受以及骨髓等的抑制。因此,寻找新的有效的药物对于现今结肠癌治疗具有重要意义。
紫杉醇(PTX)是一种广谱抗肿瘤活性的化疗药物,来源于太平洋紫杉树皮(红豆杉)[6,7]。临床试验结果表明,PTX在几种癌症治疗中有较好的活性,包括:乳腺癌、皮肤恶性肿瘤、非小细胞肺癌以及卵巢癌等[8,9]。然而,由于结肠癌中过表达的P糖蛋白(P-gp)引起了多重耐药性(MDR),导致PTX对结肠癌临床治疗效果不甚理想[10]。此外,PTX生物半衰期短,其一代药物Taxol以聚氧乙烯蓖麻油为表面活性剂,具有引起患者过敏反应的风险,从而限制了PTX临床疗效的发挥[11]。因此,迫切需要对PTX进行结构改进与剂型设计,改善其药物递送效率,提高生物利用度[12]。
脂肪酸作为生物膜和生物信号分子的重要成分,参与了细胞能量产生、代谢的过程。由于肿瘤细胞增殖快速,需要大量的细胞合成物质和能量的供应,因此,患有恶性肿瘤的患者其脂肪酸合成也较快。其中,肿瘤细胞因为迅速繁殖对含有16个碳原子的棕榈酸(PA)为主的脂肪酸需求量大,因此利用PA进行修饰有利于药物被肿瘤细胞摄取[13,14]。再者,研究发现,由PA修饰的紫杉醇,能降低其对P-gp的亲和力,避免了PTX进入肿瘤细胞后的外排,提高紫杉醇对于结肠癌治疗的有效性[15]。
此外,作为一种成熟的药物载体,脂质体(Lip)在体内可被降解、无毒性和免疫原性,能够增强药物在体内的稳定性,从而可以减少给药剂量、降低毒副作用,并且其表面具有可修饰性[16],例如,采用聚乙二醇磷脂(PEG-DSPE)修饰的脂质体因其空间位阻效应可延长其在体内的循环时间[17]。同时结合肿瘤组织的增强通透性和滞留效应(EPR),使药物通过被动靶向递送到靶部位[18]。
结合以上背景,本研究首先通过棕榈酸酯与紫杉醇共价键结合构建紫杉醇棕榈酸酯(PTX-PA),并建立基于高效液相(HPLC)的定量分析方法,旨在降低其对P-gp的亲和力,避免PTX进入肿瘤细胞后被外排,从而改善紫杉醇毒性较大、生物半衰期短、成药性差等问题,提高紫杉醇对于结肠癌治疗的有效性。其次,我们将PTX-PA包载进PEG修饰的脂质体构建紫杉醇棕榈酸酯的脂质体(PTX-PA/Lip),以实现其长循环,增加PTX的疗效、降低其毒副作用。最后,采用工艺筛选与单因素处方优化的方法制备最佳PTX-PA/Lip,为PTX-PA的制剂学研究奠定基础[19]。
1. 仪器与材料
1.1 仪器
高效液相色谱仪(安捷伦科技有限公司,美国);十万分之一电子天平(MS105DU,梅特勒托利多公司,瑞士);超滤管(30 kD,密理博公司,美国);低温高速离心机(Eppendorf-200,艾本德公司,德国);高压均质机(NanoGenizer,美国);Zeta-sizer Nano粒度仪(Nano-ZS,马尔文公司,英国)。
1.2 试剂与材料
紫杉醇购自江苏红豆杉生物科技股份有限公司,纯度≥98%;棕榈酸购自中国医药集团上海化学试剂公司,纯度≥99%;蛋黄卵磷脂(PC98-T)、胆固醇、DSPE-PEG 2000均购自上海艾韦特医药科技有限公司;1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)、4-二甲氨基吡啶(DMAP)、乙酸乙酯、二氯甲烷、无水乙醇、石油醚均购自中国医药集团上海化学试剂公司,分析纯;乙酸乙酯、PC-98T蛋黄卵磷脂(上海艾韦特医药科技有限公司);胆固醇(上海艾韦特医药科技有限公司);二氯甲烷、DSPE-PEG 2000(上海艾韦特医药科技有限公司);无水乙醇、石油醚购自中国医药集团上海化学试剂公司;甲醇购自美国默克公司,色谱纯。
2. 方法
2.1 PTX-PA的制备与纯化
PTX-PA前药由PTX与PA发生酯化反应合成,其合成过程如下[20,21]:精密称取PTX 0.85 g,加入无水二氯甲烷 30 ml。依次加入精密称取的EDC 0.19 g、DMAP 0.15 g和PA 0.31 g,在氮气保护下室温搅拌反应12 h。反应结束后,用5%柠檬酸水溶液、饱和食盐水洗涤3遍,旋蒸除去有机溶剂,即得PTX-PA粗品。采用石油醚和乙酸乙酯通过柱层析法对PTX-PA进行分离、纯化。洗脱完成后,将产物旋蒸去除有机溶剂,得到的白色固体即为PTX-PA,样品经核磁共振氢谱、碳谱确定为PTX-PA,样品纯度98.5%。
2.2 基于HPLC定量检测的方法学建立[22]
2.2.1 最大吸收波长测定与色谱条件设定
精密取适量的PTX-PA粉末,采用甲醇溶解,定容,通过全波长(190~400 nm)扫描测定其紫外最大吸收波长λmax。
本实验采用Agilent Eclipse plus C18色谱柱(4.6 mm×250 mm,5 μm),流动相采用甲醇/水(95∶5,V/V),进样量20 μl,流速1.0 ml/min。
2.2.2 样品溶液配制
空白溶液的配制:精密量取不含药的空白脂质体1 ml加入适量的甲醇溶液,超声,用甲醇定容至25 ml,0.45 μm的微孔滤膜过滤,滤液即为空白溶液。
对照品溶液的配制:精密称取PTX-PA 粉末50 mg,用甲醇溶解并定容至50 ml,过滤,即得PTX-PA对照品储备溶液。
供试品溶液的配制:精密量取1 ml PTX-PA/Lip,加入适量甲醇溶解、超声破乳、定容至25 ml,过滤,滤液即为供试品溶液。
2.2.3 专属性考察
分别取适量空白溶液、对照品溶液和供试品溶液,用流动相稀释至适当的浓度后,按照“色谱条件”中建立的高相液相参数进行进样分析。
2.2.4 线性关系考察
精密量取适量PTX-PA对照品储备液依次稀释为浓度1、5、10、25、50、100 μg/ml的PTX-PA系列浓度。按照“色谱条件”中的高效液相参数进行进样分析(n=5),并记录不同浓度的PTX-PA的色谱峰面积。以浓度(C)为X轴、峰面积(A)为Y轴进行回归。
2.2.5 精密度考察
日内精密度考察:精密吸取3种不同浓度(5、25、100 μg/ml)的 PTX-PA对照品溶液,对同一浓度溶液连续进样5次,每次10 µl,按照“2.2.1”项下色谱条件进行分析,记录各个浓度吸收峰面积。
日间精密度考察:精密吸取3种不同浓度(5、25、100 μg/ml)的 PTX-PA对照品溶液,对同一浓度溶液连续进样5 d,每天1次,每次10 µl,按照“2.2.1”项下色谱条件进行分析,记录第0、1、2、3、4天的吸收峰面积,计算样品浓度,考察仪器的日间精密度。
2.2.6 重复性与稳定性
空白脂质体超声破乳,配制成3种不同浓度(1、10、100 μg/ml),连续进样5次,每次10 µl,记录各吸收峰面积,考察重复性。精密吸取浓度为50 μg/ml的 PTX-PA供试品溶液,于0、2、4、6、8、12、24 h进样测定,每次进样10 µl,记录各紫外吸收峰面积,考察样品的稳定性。
2.2.7 加样回收率考察
空白脂质体超声破乳,分别加入浓度为1 mg/ml的PTX-PA溶液0.5、2.5、5 ml,采用流动相稀释定容至100 ml,分别进样,并结合PTX-PA的理论浓度(5、25、50 μg/ml)进行加样回收率的计算与分析。
2.3 紫杉醇棕榈酸酯脂质体PTX-PA/Lip的制备
2.3.1 PTX-PA/Lip的制备方法的选择
(1) 薄膜分散法
精密称取PTX-PA 20 mg、蛋黄卵磷脂350 mg、胆固醇5 mg和DSPE-PEG2000 25 mg,加入适量的二氯甲烷使其充分溶解。然后旋蒸除去有机溶剂,使圆底烧瓶底部形成一层均匀透明的薄膜,再加入预热至同等温度的重蒸水10 ml,震荡、水化,得PTX-PA/Lip粗品。将得到的粗品经探头超声(1 min)、过滤处理后,即得PTX-PA/Lip纳米给药系统[19]。
(2) 高压均质法
将薄膜分散法制得的PTX-PA/Lip粗品置于高压均质机中,经3次均质处理后(均质压力12 000 psi),即得PTX-PA/Lip纳米给药系统[23,24]。
(3)挤出法
将薄膜分散法制得的PTX-PA/Lip粗品置于挤出器中,使分别经过孔径为0.2、0.1、0.05 μm的聚碳酸酯膜,即得PTX-PA/Lip纳米给药系统[25-27]。
2.3.2 处方工艺筛选
(1)磷脂种类的选择
采用薄膜分散法考察不同磷脂制备的PTX-PA/Lip,包括:氢化磷脂(HSPC)、蛋黄卵磷脂(PC98-T)、蛋黄磷脂(EPCS)、二棕榈酸磷脂酰胆碱(DPPC),以形态、粒径、包封率为指标进行评价。
(2)磷脂和药物/胆固醇比例的考察
分别以磷脂和药物的质量比(5∶1、10∶1、20∶1、30∶1、40∶1)/PC98-T和胆固醇的质量比(4∶0.05、4∶0.1、4∶0.2、4∶0.3、4∶0.4、4∶0.5)为自变量制备PTX-PA/Lip脂质体,考察不同处方的粒径、粒径分布、包封率,确定处方中磷脂与药物/胆固醇的质量比。
(3)药物和DSPE-PEG2000比例的考察
以PTX-PA和DSPE-PEG2000的质量比(1∶0.5、1∶1、1∶1.5、1∶2、1∶2.5)为自变量,考察其用量对制剂的外观澄明度、纳米粒子大小等是否产生影响。
(4)薄膜蒸发法的温度考察
将旋转蒸发仪温度分别设置为35、40、45、50、55 ℃,考察薄膜蒸发过程中温度对PTX-PA/Lip形态、粒径、包封率等的影响。
(5)探头超声时间的考察
以探头超声PTX-PA/Lip粗品的时间为自变量,考察不同超声时间(30、60、90、180、240 s)对PTX-PA/Lip纳米制剂形态、纳米粒子大小的影响。
2.4 统计学分析
数据采用IBM SPSS Statistics 27.0进行统计分析,采用单因素方差分析ANOVA进行显著性检验与评价。
3. 结果与讨论
3.1 基于PTX-PA的HPLC定量检测方法学建立
3.1.1 最大吸收波长的选择
实验结果如图1所示,选用PTX-PA的最大吸收波长为228 nm为测定波长。
3.1.2 专属性考察
如图2所示,本章所建立的色谱条件对PTX-PA检测具有专属性,溶剂以及样品中的辅料对PTX-PA的检测不产生干扰。
3.1.3 线性关系考察
按照2.2.4方法进行回归,得PTX-PA的吸收峰面积-浓度在1~100 μg/ml的浓度范围内为线性方程:A=15.14 C+10.81(r=0.999 8)。
3.1.4 精密度考察
按照2.2.5方法进行精密度考察,结果如表1所示,日内与日间精密度各时间点峰面积的RSD均小于3%,表明仪器的日内与日间精密度符合测定要求。
表 1 PTX-PA的精密度考察结果(n=5)理论浓度(μg/ml) 实测浓度(μg/ml) RSD(%) 日内 5.00 4.98±0.13 2.65 25.00 25.30±0.55 2.18 100.00 99.66±1.11 1.11 日间 5.00 4.99±0.11 2.31 25.00 25.50±0.57 2.23 100.00 100.65±1.38 1.37 3.1.5 重复性与稳定性
按照2.2.6方法进行研究,精密吸取3种不同浓度的 PTX-PA溶液,连续进样5次并记录各吸收峰面积。各浓度峰面积RSD均<3%,表明仪器符合检测检测要求。此外,稳定性结果表明,样品溶液峰面积的RSD为0.81%,表明制备的PTX-PA溶液在24 h内稳定。
3.1.6 加样回收率
按照2.2.7方法计算加样回收率,结果如表2所示:低、中、高3个浓度的加样回收率均在95%~105%之间,且RSD分别为2.39%、1.80%、2.34%,表明本实验建立的高效液相色谱定量方法可用于PTX-PA的含量测定。
表 2 PTX-PA的加样回收率测试结果(n=5)理论浓度(μg/ml) 检测浓度(μg/ml) 回收率(%) RSD(%) 5 5.02±0.12 100.4 2.39 25 24.98±0.45 99.92 1.80 50 50.01±1.17 100.02 2.34 3.2 紫杉醇棕榈酸酯脂质体的制备及处方优化
3.2.1 PTX-PA/Lip制备方法的选择
采用不同方法制备的PTX-PA/Lip表征结果如表3所示,按照2.4方法进行统计学分析,3种制备方法的包封率无显著性差异,但采用薄膜分散法制备的PTX-PA/Lip粒径与PDI更小。因此,本研究优选薄膜分散法来构建PTX-PA/Lip。
表 3 3种常规制备方法对PTX-PA/Lip粒径、粒径分布、包封率的影响制备方法 粒径(l/nm) PDI 包封率(%) 薄膜分散法 76.76±3.39 0.104±0.02 79.38±2.00 高压均值法 125.11±5.32 0.139±0.03 78.87±2.00 挤出法 128.87±4.92 0.239±0.05 81.38±1.11 3.2.2 处方工艺筛选
(1)磷脂种类的选择
按照2.3.2(1)制备的PTX-PA/Lip表征结果如表4所示,以PC98-T为膜材制备的纳米给药系统粒径小、外观澄明、粒径分布均匀、包封率较高,因此选择PC98-T作为本研究中的磷脂。
表 4 磷脂种类对脂质体的外观形态、颗粒大小、药物包封率的影响磷脂种类 外观 粒径(l/nm) PDI 包封率(%) PC98-T 半透明 76.76±3.39 0.104±0.02 79.38±2.00 HSPC 有沉淀 177.86±5.39 0.532±0.08 59.06±1.32 EPCS 半透明 135.12±5.65 0.108±0.03 73.23±1.15 DPPC 有沉淀 158.26±4.11 0.669±0.05 53.27±2.68 (2)磷脂和药物比例的考察
按照2.3.2(2)项下确定处方中药物和磷脂的用量,其结果如表5所示,磷脂PC98-T和药物的质量比大于10时,制备的PTX-PA/Lip外观澄明度、粒子大小、粒径分散系数等参数无显著性差别。随着磷脂浓度不断增加,药物的包封率不断增加,当PC98-T和PTX-PA的质量比为20∶1时,脂质体对药物的包封率最高,后期考虑到经济成本,将PC98-T和PTX-PA的质量比定为20∶1。
表 5 磷脂和药物质量比对脂质体的外观澄明度、颗粒大小、对药物包封率的影响磷脂∶药物 外观 粒径(l/nm) PDI 包封率(%) 5∶1 略透明 134.62±2.95 0.364±0.04 58.15±1.73 10∶1 有沉淀 90.29±4.66 0.151±0.04 71.56±1.60 20∶1 半透明 84.58±1.33 0.11±0.02 83.50±0.92 30∶1 半透明 86.06±2.71 0.09±0.05 73.44±4.44 40∶1 有沉淀 88.86±1.91 0.199±0.05 68.37±11.08 (3)磷脂和胆固醇比例的考察
按照2.3.2(2)方法研究,结果如表6所示,随着胆固醇用量增多,制剂变浑浊,粒径增大,载药量显著降低。因此,胆固醇不加入本制剂的处方中。
表 6 磷脂和胆固醇质量比对脂质体外观澄明度、颗粒大小、对药物包封率的影响磷脂∶胆固醇 外观 粒径(l/nm) PDI 包封率(%) 4∶0.05 半透明 115.37±4.48 0.200±0.07 71.57±1.28 4∶0.1 半透明 160.16±3.15 0.251±0.01 61.08±3.13 4∶0.2 半透明 182.75±2.43 0.217±0.04 54.97±0.95 4∶0.3 乳白色 241.90±12.09 0.697±0.12 54.11±1.64 4∶0.4 乳白色 255.33±8.27 0.700±0.138 48.84±0.78 (4)药物和DSPE-PEG2000比例的考察
按照2.3.2(3)方法研究,其结果如表7所示,DSPE-PEG2000对包封率没有显著性影响,但当DSPE-PEG2000含量不断增加时,纳米粒子的颗粒大小先降低,当药物与DSPE-PEG2000质量比小于1∶1.5时,粒径无显著性变化,因此,药物与DSPE-PEG2000的质量比选择1∶1.5。
表 7 PTX-PA和DSPE-PEG2000的质量比对脂质体外观、粒径、药物包封率的影响药物∶DSPE-
PEG2000外观 粒径(l/nm) PDI 包封率(%) 2∶1 半透明 82.86±2.15 0.107±0.01 90.48±0.49 1∶1 半透明 78.16±2.05 0.351±0.38 90.41±0.34 1∶1.5 半透明 72.23±2.60 0.110±0.02 89.66±1.25 1∶2 半透明 74.64±1.81 0.140±0.04 90.90±2.93 1∶2.5 半透明 75.38±2.10 0.097±0.04 89.48±0.67 (5)薄膜蒸发法的温度考察
按照2.3.2(4),采用不同温度制备纳米制剂表征结果如表8所示,在筛选的5个温度中,当温度为45 ℃时,脂质体粒径最小、粒径分散性好、包封率最高,因此,本研究选用45 ℃作为薄膜蒸发温度。
表 8 温度对PTX-PA/Lip外观、粒径、包封率的影响温度(T/ ℃) 外观 粒径(l/nm) PDI 包封率(%) 35 略透明 159.42±2.42 0.545±0.08 54.94±1.85 40 半透明 105.93±6.13 0.269±0.03 73.98±1.60 45 半透明 76.97±2.50 0.105±0.049 91.13±1.45 50 半透明 91.93±2.60 0.181±0.05 80.27±2.13 55 半透明 112.23±6.37 0.233±0.06 74.15±2.12 (6)探头超声时间的考察
按照2.3.2(5)方法进行研究,结果如表9所示:处理时间较短时,纳米粒径较大,颗粒大小分布不均匀;随着超声处理的延长,粒径减小,包封率也提高;超声时间过长,脂质体结构破坏,导致药物泄露、包封率降低。因此将探头超声处理时间定为90 s。
表 9 超声处理对脂质体的外观澄明度、颗粒大小、对药物包封率的影响超声时间(t/s) 外观 粒径(l/nm) PDI 包封率(%) 30 沉淀 278.09±4.73 0.857±0.10 42.83±2.76 60 半透明 113.21±11.16 0.485±0.04 54.96±2.41 90 半透明 78.13±2.78 0.055±0.02 92.74±0.77 180 半透明 123.17±8.39 0.430±0.08 76.29±1.76 240 沉淀 261.85±4.94 0.915±0.20 50.42±2.74 3.3 紫杉醇棕榈酸酯脂质体PTX-PA/Lip的理化性质表征
综上研究,采用的最优处方和制备工艺如下:精密称取PTX-PA 20 mg、PC98-T 400 mg、DSPE-PEG2000 30 mg,加入适量二氯甲烷溶解,接着45 ℃旋蒸去除有机溶剂,再向圆底烧瓶底部薄膜中加入10 ml重蒸水(预热至同等温度),震荡、水化,得PTX-PA/Lip粗品,最后粗品探头超声(90 s)、过滤(0.22 μm),得最终样品PTX-PA/Lip纳米给药系统。
采用Zeta-sizer Nano粒度仪测定最优PTX-PA/Lip的粒径、PDI与zeta电位。结果如图3所示,制备的PTX-PA/Lip脂质体粒径大小为(62.75±1.81) nm,PDI为(0.076±0.020),Zeta电位为(−15.9±0.21) mV,表明制备的PTX-PA/Lip纳米给药系统粒径较小、分布均匀、具有良好的分散性。
4. 总结
本实验合成紫杉醇前药——紫杉醇棕榈酸酯PTX-PA,建立PTX-PA的HPLC定量测定方法,经一系列方法学验证,表明其符合PTX-PA定量分析要求,为后续试验奠定了基础。本实验采用薄膜分散法制备PTX-PA脂质体,工艺简便,技术成熟,并通过单因素筛选对PTX-PA脂质体进行处方优化。本文基于纳米技术成功制备出棕榈酸修饰的紫杉醇脂质体,增强了紫杉醇在靶细胞的递送,为PTX-PA后续的药效学研究奠定基础。
-
表 1 荧光定量 PCR 引物序列表
引物名称 引物序列(5'→3') 片段长度(bp) 退火温度(℃) R-TP53-S GAAGCCCTCCAAGTGTCAGC 220 60 R-TP53-A GGCAGAACAGCTTATTGAGGGA 60 R-fas-S AGCGTTCGTGAAACCGACAAC 172 60 R-fas-A AGTGTTTCCTGTCCGTGTACTCC 60 R-fasl-S GCAAATAGCCAACCCCAGCAC 186 60 R-fasl-A ACGAAGTACAACCCAGCCTCA 60 R-BAX-S GGGCCTTTTTGCTACAGGGTTT 284 60 R-BAX-A AGCAAAGTAGAAAAGGGCAACCAC 60 R-GAPDH-S CTGGAGAAACCTGCCAAGTATG 138 60 R-GAPDH-A GGTGGAAGAATGGGAGTTGCT 60 表 2 不同浓度5-FU 及正极性驻极体和不同浓度5-FU联用对瘢痕细胞生长的影响(单位:μg/ml,n=12)
组别 0 10 40 160 24 h组 1.00±0.028 0.99±0.028 0.77±0.027 0.49±0.033 48 h组 1.00±0.024 0.98±0.025 0.65±0.028 0.41±0.028 72 h组 1.00±0.020 0.96±0.033 0.53±0.017 0.21±0.046 +5000 V与5-FU联用72 h组 0.90±0.034 0.47±0.051 0.15±0.051 表 3 不同实验组作用于瘢痕成纤维细胞后p53、fas、Bax和fasl mRNA的表达水平(平均值±SD,n=3)
组别 p53 fas Bas fasl 对照组 1.00±0.00 1.00±0.01 1.00±0.02 1.00±0.03 5-FU组 1.60±0.06 2.23±0.11 1.81±0.13 2.01±0.19 +5000 V 驻极体组 1.30±0.10 1.61±0.21 1.41±0.10 1.50±0.12 +5000 V+5-FU组 1.92±0.14 2.81±0.29 2.20±0.17 2.49±0.21 -
[1] 柳承业, 徐凯, 林瀚. 曲安奈德与A型肉毒毒素联合注射治疗瘢痕疙瘩的疗效观察[J]. 中国美容整形外科杂志, 2020, 31(7):430-432,453. doi: 10.3969/j.issn.1673-7040.2020.07.015 [2] 安晓强, 苑旺, 梁媛媛, 等. 正极性驻极体5-氟尿嘧啶贴剂对兔耳瘢痕组织中Ⅰ、Ⅲ型胶原和TCF-β表达的影响[J]. 药学实践杂志, 2019, 37(2):115-120,145. [3] YAO G, MO X Y, YIN C H, et al. A programmable and skin temperature-activated electromechanical synergistic dressing for effective wound healing[J]. Sci Adv, 2022, 8(4):eabl8379. doi: 10.1126/sciadv.abl8379 [4] LIANG Y Y, XU J J, SUN Z P, et al. Research progress on the correlation between bacterial biofilm microenvironment and charge regulation[J]. IEEE Trans Dielectr Electr Insul, 2022, 29(4):1540-1545. doi: 10.1109/TDEI.2022.3183663 [5] LUO R Z, SHI B J, LUO D, et al. Self-powered electrical stimulation assisted skin wound therapy[J]. Sci Bull, 2023, 68(16):1740-1743. doi: 10.1016/j.scib.2023.07.017 [6] VERDES M, MACE K, MARGETTS L, et al. Status and challenges of electrical stimulation use in chronic wound healing[J]. Curr Opin Biotechnol, 2022, 75:102710. doi: 10.1016/j.copbio.2022.102710 [7] LI X, WANG Y R, XU M X, et al. Polymer electrets and their applications[J]. Appl Polym Sci, 2021, 20: 50406. [8] SUN Z P, WANG H B, GUO X, et al. Electret prevents the formation of bacterial biofilm[J]. IET Nanodielectr, 2023, 6(2):57-63. doi: 10.1049/nde2.12051 [9] 梁媛媛, 涂晔, 崔黎丽, 等. 驻极体静电场对巨噬细胞迁移能力的影响[J]. 第二军医大学学报, 2021, 42(6):688-692. [10] STRATFORD J P, EDWARDS C L A, GHANSHYAM M J, et al. Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity[J]. Proc Natl Acad Sci U S A, 2019, 116(19):9552-9557. doi: 10.1073/pnas.1901788116 [11] 王碧瑶, 肖含先之, 牛依琳, 等. 当归多糖促进5-氟尿嘧啶作用后小鼠应激性红细胞发生[J]. 中国药理学通报, 2023, 39(10):1949-1956. doi: 10.12360/CPB202211087 [12] 田阳, 王飞, 徐骁然, 等. 沉默单核细胞趋化蛋白3对人增生性瘢痕成纤维细胞增殖、迁移及凋亡的影响[J]. 临床皮肤科杂志, 2022, 51(9):518-523. [13] ZHAO M. Electrical fields in wound healing-An overriding signal that directs cell migration[J]. Semin Cell Dev Biol, 2009, 20(6):674-682. doi: 10.1016/j.semcdb.2008.12.009 [14] LUO R Z, DAI J Y, ZHANG J P, et al. Accelerated skin wound healing by electrical stimulation[J]. Adv Healthc Mater, 2021, 10(16):e2100557. doi: 10.1002/adhm.202100557 [15] NUCCITELLI R. A role for endogenous electric fields in wound healing[J]. Curr Top Dev Biol, 2003, 58:1-26. -