[1]
|
Oliner JD, Kinzler KW, Meltzer PS, et al. Amplication of a gene encoding a p53-associated protein in human sarcomas[J]. Nature, 1992, 358: 80-83. |
[2]
|
Levine AJ. P53, the cellular gate keeper for growth and division[J]. Cell, 1997, 88(3): 323-331. |
[3]
|
Bert V, David L, Arnold JL. Surfing the p53 network[J]. Nature, 408: 307-310. |
[4]
|
Oliner JD, Pietenpol JA, Thiagalingam S, et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53[J]. Nature, 1993, 362: 857-860. |
[5]
|
Pickskey SM, Lane DP. The p53-mdm2 autoregulatory feedback loop: a paradigm for the regulation of growth control by p53[J]. BioEssays, 1993, 15: 689-690. |
[6]
|
Raymond EM, Melanie C, Tina ND, et al. Direct inhibition of the NOTCH transcription factor complex[J]. Nature, 2009, 462(7270): 182-188. |
[7]
|
Wu X, Bayle JH, Olson D, et al. The P53-mdm-2 autoregulatory feedback loop[J]. Genes Devel, 1993, 7(7a): 1126-1132. |
[8]
|
Almerico AM, Tutone M, Pantano L, et al. Molecular dynamics studies on Mdm2 complexes: an analysis of the inhibitor influence[J]. Biochem Biophys Res Commun, 2012, 424(2): 341-347. |
[9]
|
Meng W, Brigance RP, Chao HJ,et al. Discovery of 6-(aminomethyl)-5-(2,4-dichlorophenyl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxa mides as potent, selective dipeptidyl peptidase-4 (DPP4) inhibitors[J]. J Med Chem, 2010, 53(15): 5620-5628. |
[10]
|
Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the P53 pathway by small-molecule antagonists of MDM2[J]. Science, 2004, 303(5659): 844-848. |
[11]
|
Wang B, Fang L, Zhao H, et al. MDM2 inhibitor nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells[J]. Acta Biochim Biophys Sin (Shanghai), 2012, 44(8): 685-691. |
[12]
|
Warner WA, Sanchez R, Dawoodian A, et al. Identification of FDA-approved drugs that computationally bind to MDM2[J]. Chem Biol Drug Des, 2012, 80(4): 631-637. |
[13]
|
Zhuang C, Miao Z, Zhu L, et al. Synthesis and biological evaluation of thio-benzodiazepines as novel small molecule inhibitors of the P53-MDM2 protein-protein interaction[J]. Eur J Med Chem, 2011, 46(11): 5654-5661. |
[14]
|
Grasberger BL, Lu T, Schubert C, et al. Discovery and cocrystalstructure of benzodiazepinedione MDM2 antagonists that activate P53 in cells. J Med Chem, 2005, 48(4): 909-912. |
[15]
|
Mohammad RM, Wu J, Azmi AS, et al. An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals[J]. Mol Cancer, 2009, 8: 115. |
[16]
|
Andrea GC. Protein-protein interfaces: mimics and inhibitors[J]. Curr Opin Chem Biol, 2001, 5:654-659. |
[17]
|
Arkin MR and Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream[J]. Nat Rev Drug Discov, 2004, 3(4): 301-317. |
[18]
|
Pazgier M, Liu M, Zou G, et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX[J]. Proc Natl Acad Sci(USA), 2009, 106(12): 4665-4670. |
[19]
|
Chang YS, Graves B, Guerlavais V, et al. Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy[J]. Proc Natl Acad Sci USA, 2013, 110(36): E3445-E3454. |
[20]
|
Li C, Pazgier M, Liu M, et al. Apamin as a template for structure-based rational design of potent peptide activators of p53[J]. Angew Chem Int Ed Engl, 2009, 48(46): 8712-8715. |
[21]
|
Li C, Zhan C, Zhao L, et al. Functional consequences of retro-inverso isomerization of a miniature protein inhibitor of the p53-MDM2 interaction[J]. Bioorg Med Chem, 2013, 21(14): 4045-4050. |
[22]
|
Hu Y, Li X, Sebti SM, et al. Design and synthesis of peptides: a new class of peptide mimics[J]. Bioorg Med Chem Lett, 2011, 21(5): 1469-1471. |
[23]
|
Noguchi T, Oishi S, Honda K, et al. Affinity-based screening of MDM2/MDMX-p53 interaction inhibitors by chemical array: identification of novel peptidic inhibitors[J]. Bioorg Med Chem Lett, 2013, 23(13): 3802-3805. |
[24]
|
Duncan SJ, Gruschow S, Williams DH, et al. Isolation and structure elucidation of chlorofusin, a novel P53-MDM2 antagonist from a Fusarium sp[J]. J Am Chem Soc, 2001, 123: 554-560. |
[25]
|
Lee SY and Boger DL. Synthesis of the chlorofusin cyclic peptide[J]. Tetrahedron, 2009, 65(16): 3281-3284. |
[26]
|
Sakurai K and Kahne D. Design and synthesis of functionalized trisaccharides as P53-peptide mimics[J]. Tetrahedron Lett, 2010, 51(29): 3724-3727. |
[27]
|
Phan J, Li Z, Kasprzak A, et al. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX[J]. J Biol Chem, 2010, 285(3): 2174-2183. |
[28]
|
Liu M, Pazgier M, Li C, et al. A left-handed solution to peptide inhibition of the P53-MDM2 interaction[J]. Angew Chem Int Ed Engl, 2010, 49(21): 3649-3652. |
[29]
|
Li C, Pazgier M, Li J, et al. Limitations of peptide retro-inverso isomerization in molecular mimicry[J]. J Biol Chem, 2010, 285(25): 19572-19581. |
[30]
|
Harker EA and Schepartz A. Cell-permeable beta-peptide inhibitors of p53/hDM2 complexation[J]. Chembiochem, 2009, 10(6): 990-993. |
[31]
|
Hintersteiner M, Kimmerlin T, Garavel G, et al. A highly potent and cellularly active beta-peptidic inhibitor of the p53/hDM2 interaction[J]. Chembiochem, 2009, 10(6): 994-998. |
[32]
|
Yamada S, Kanno H and Kawahara N. Trans-membrane peptide therapy for malignant glioma by use of a peptide derived from the MDM2 binding site of p53[J]. J Neurooncol, 2012, 109(1): 7-14. |
[33]
|
Li C, Shen J, Wei X, et al. Targeted delivery of a novel palmitylated D-peptide for antiglioblastoma molecular therapy[J]. J Drug Target, 2012, 20(3): 264-271. |
[34]
|
Jeong WJ, Lee MS and Lim YB. Helix stabilized, thermostable, and protease-resistant self-assembled peptide nanostructures as potential inhibitors of protein-protein interactions[J]. Biomacromolecules, 2013, 14(8): 2684-2689. |
[35]
|
Muppidi A, Wang Z, Li X, et al. Achieving cell penetration with distance-matching cysteine cross-linkers: a facile route to cell-permeable peptide dual inhibitors of Mdm2/Mdmx[J]. Chem Commun (Camb), 2011, 47(33): 9396-9398. |
[36]
|
Muppidi A, Li X, Chen J, et al. Conjugation of spermine enhances cellular uptake of the stapled peptide-based inhibitors of p53-Mdm2 interaction[J]. Bioorg Med Chem Lett, 2011, 21(24): 7412-7415. |
[37]
|
Madden MM, Muppidi A, Li Z, et al. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition[J]. Bioorg Med Chem Lett, 2011, 21(5): 1472-1476. |