[1]
|
Wani M C, Taylor H L, Wall M E, et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia.[J]. J Amer Chem Soc, 1971, 93(9):2325-2327. |
[2]
|
Yusuf RZ, Duan Z, Lamendola DE, et al. Paclitaxel resistance:molecular mechanisms and pharmacologic manipulation[J]. Curr Cancer Drug Targets, 2003,3(1):1-19. |
[3]
|
Scripture CD, Figg WD, Sparreboom A. Paclitaxel chemotherapy:from empiricism to a mechanism-based formulation strategy[J]. Ther Clin Risk Manag, 2005,1(2):107-114. |
[4]
|
Wang Y, Li X, Wang L, et al. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery[J]. Int J Nanomed, 2011,6:1497-1507. |
[5]
|
Webster L, Linsenmeyer M, Millward M, et al. Measurement of cremophor EL following taxol:plasma levels sufficient to reverse drug exclusion mediated by the multidrug-resistant phenotype[J]. JNCI, 1993, 85(20):1685-1690. |
[6]
|
Chervinsky DS, Brecher ML, Hoelcle MJ. Cremophor-EL enhances taxol efficacy in a multi-drug resistant C1300 neuroblastoma cell line[J]. Anticancer Res, 1993, 13(1):93-96. |
[7]
|
张珏, 吕加国, 朱驹. 抗肿瘤药物紫杉醇的化学研究进展[J]. 中国新药杂志, 2006,15(3):178-181. |
[8]
|
Meerum Terwogt JM, ten Bokkel Huinink WW, Schellens JH, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel.[J]. Anticancer Drugs, 2001,12(4):315-323. |
[9]
|
Tr dan O, Galmarini CM, Patel K, et al. Drug Resistance and the Solid Tumor Microenvironment[J]. JNCI, 2007,99(19):1441-1454. |
[10]
|
Misra S, Hascall VC, Markwald RR, et al. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer[J]. Front Immunol, 2015,6:201. |
[11]
|
Shahbaz M, Ruliang F, Xu Z, et al. mRNA expression of somatostatin receptor subtypes SSTR-2, SSTR-3, and SSTR-5 and its significance in pancreatic cancer[J]. World J Surg Oncol, 2015,13:46. |
[12]
|
Barar J, Kafil V, Majd MH, et al. Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells[J]. J Nanobiotechnol, 2015,13:26. |
[13]
|
Huo M, Zhu Q, Wu Q, et al. Somatostatin receptor-mediated specific delivery of paclitaxel prodrugs for efficient cancer therapy[J]. J Pharm Sci-US, 2015, 104(6):2018-2028. |
[14]
|
Zhong Y, Goltsche K, Cheng L, et al. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo[J]. Biomaterials, 2016, 84:250-261. |
[15]
|
Alaoui AE, Saha N, Schmidt F, et al. New Taxol(paclitaxel) prodrugs designed for ADEPT and PMT strategies in cancer chemotherapy[J]. Bioorg Med Chem, 2006, 14(14):5012-5019. |
[16]
|
Satsangi A, Roy SS, Satsangi RK, et al. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells[J]. Mol Pharm, 2014, 11(6):1906-1918. |
[17]
|
Li N, Cai H, Jiang L, et al. Enzyme-Sensitive and Amphiphilic PEGylated Dendrimer-Paclitaxel Prodrug Based Nanoparticles for Enhanced Stability and Anticancer Efficacy[J]. ACS Appl Mater Interfaces, 2017,9(8),6865-6877. |
[18]
|
樊健, 俞光荣. 葡萄糖转运蛋白1与恶性肿瘤相关性的研究进展[J]. 中国肿瘤生物治疗杂志, 2010,17(2):232-236. |
[19]
|
Liu DZ, Sinchaikul S, Reddy PV, et al. Synthesis of 2'-paclitaxel methyl 2-glucopyranosyl succinate for specific targeted delivery to cancer cells[J]. Bioorg Med Chem Lett, 2007, 17(3):617-620. |
[20]
|
常彬霞, 貌盼勇. 谷胱甘肽S转移酶的研究进展及其与肿瘤的相关性[J]. 解放军医学杂志, 2012,37(8):838-842. |
[21]
|
Ushio-Fukai M, Nakamura Y. Reactive oxygen species and angiogenesis:NADPH oxidase as target for cancer therapy[J]. Cancer Lett, 2008,266(1):37-52. |
[22]
|
Jiang Y,Wang X,Liu X, et al. Enhanced antiglioma efficacy of ultrahigh loading capacity paclitaxel prodrug conjugate self-assembled targeted nanoparticles[J]. ACS Appl Mater Interfaces, 2017, 9(1):211-217. |
[23]
|
Luo C, Sun J, Liu D, et al. Self-Assembled Redox Dual-Responsive Prodrug-Nanosystem Formed by Single Thioether-Bridged Paclitaxel-Fatty Acid Conjugate for Cancer Chemotherapy[J]. Nano Lett, 2016, 16(9):5401-5408. |
[24]
|
Yang LV, Castellone RD, Dong L. Targeting Tumor Microenvironments for Cancer Prevention and Therapy[M]. InTech, 2012:1811-1814. |
[25]
|
Ling L, Du Y, Ismail M, et al. Self-assembled liposomes of dual paclitaxel-phospholipid prodrug for anticancer therapy[J]. Int J Pharm, 2017, 526(1-2):11-22. |
[26]
|
杜征臻, 张琰, 叶金海,等. 聚己内酯-紫杉醇高分子前药的合成及性能研究[J]. 化学学报, 2015, 73(4):349-356. |
[27]
|
Chen L, Endler A, Shibasaki F. Hypoxia and angiogenesis:regulation of hypoxia-inducible factors via novel binding factors.[J]. Experimental & Molecular Medicine, 2009, 41(12):849-857. |
[28]
|
Damen EW, Nevalainen TJ, van den Bergh TJ, et al. Synthesis of novel paclitaxel prodrugs designed for bioreductive activation in hypoxic tumour tissue[J]. Bioorg Med Chem, 2002, 10(1):71-77. |
[29]
|
Wang J, Luo T, Li S, et al. The powerful applications of polyunsaturated fatty acids in improving the therapeutic efficacy of anticancer drugs[J]. Expert Opin Drug Deliv, 2012,9(1):1-7. |
[30]
|
Kuznetsova L, Chen J, Sun L, et al. Syntheses and evaluation of novel fatty acid-second-generation taxoid conjugates as promising anticancer agents[J]. Bioorg Med Chem Lett, 2006,16(4):974-977. |
[31]
|
Bouvier E, Thirot S, Schmidt F, et al. A new paclitaxel prodrug for use in ADEPT strategy[J]. Org Biomol Chem,2003,1(19):3343-3352. |
[32]
|
Nawa A, Tanino T, Luo C, et al. Gene directed enzyme prodrug therapy for ovarian cancer:could GDEPT become a promising treatment against ovarian cancer?[J]. Anticancer Agents Med Chem, 2008, 8(2):232-239. |