-
炎症泛指机体受到创伤或病原体感染等刺激后所产生的生理反应,主要表现为疼痛、红肿、发热等[1]。通常情况下,机体受到创伤等刺激后,所产生的炎症反应是一种生理性保护反应,有益于机体损伤的修复[2-3],但当机体内的抗炎系统过于活跃时,会引起自身免疫系统紊乱,对机体正常的细胞及组织进行攻击,如系统性红斑狼疮及类风湿性关节炎等免疫疾病[4]。目前,临床上常用的抗炎药物主要分为甾体类抗炎药(SAIDs)、非甾体类抗炎药(NSAIDs)及免疫调节药,但这几类药物多具有副作用[5-7],因此,新型抗炎药物的研发具有极高的科研前景和社会价值。豆豉姜是樟科植物山鸡椒Litsea cubeba(Lour.)Pers的根及根茎,被傣医学及中医作为广泛的民间方剂,多用于祛风散寒、息肝风、消肿、治风湿痹痛的治疗。前期课题组提取分离得到新型的二苄基丁烷型木脂素9,9’-O-二-(E)-阿魏酰基-内消旋-5,5’-二甲氧基开环异落叶松树脂酚(LCA)化学结构如图1所示,并发现其具有改善类弗氏完全佐剂大鼠关节炎模型中炎性症状的疗效[8],因此,课题组推测LCA是豆豉姜中具有抗炎活性的天然化合物,故采用小鼠耳肿胀和棉球肉芽肿模型及RAW264.7细胞实验,对其抗炎作用进行研究。
-
如表1所示,与模型组对比,吲哚美辛(8 mg/kg)可抑制由二甲苯造成的小鼠耳廓肿胀(P<0.05),抑制率为29.80%;LCA(40 mg/kg)组显著抑制小鼠耳廓肿胀度(P<0.01),抑制率为37.41%,而LCA(20 mg/kg)组对小鼠耳廓肿胀度的抑制无统计学意义(P>0.05)。
表 1 LCA对二甲苯致小鼠耳廓肿胀的影响(n=10,
$\bar{ x}\pm {{s}}$ )组别 肿胀度(m/mg) 抑制率(%) 模型组 3.02±0.63 — LCA组(20 mg/kg) 2.52±0.29 16.56 LCA组(40 mg/kg) 1.89±0.54** 37.41 吲哚美辛组(8 mg/kg) 2.12±0.61* 29.80 *P<0.05,**P<0.01,与模型组比较。 -
如图2,模型组大鼠棉球肉芽肿体积较大且颜色鲜红,吲哚美辛组的棉球肉芽肿体积小且颜色浅,而LCA组的棉球肉芽肿在色泽和大小上均有别于模型组。数据分析显示(表2、表3),与模型组相比,阳性药组吲哚美辛明显抑制大鼠的棉球肉芽肿(P<0.001),且干重、湿重的抑制率分别为48.73%和44.19%;LCA高剂量组也可明显减少棉球肉芽肿的干重及湿重(P<0.01),且抑制率达到23.89%和29.90%。
表 2 LCA对大鼠棉球肉芽肿湿重的影响(n=5,
$\bar{ x}\pm {{s}}$ )组别 棉球肉芽肿湿重(m/mg) 抑制率(%) 模型组 300.1±53.26 — LCA组(20 mg/kg) 256.0±36.36 14.70 LCA组(40 mg/kg) 228.4±51.16*** 23.89 吲哚美辛组(5 mg/kg) 167.5±15.74*** 44.19 ***P<0.001,与模型组比较。 表 3 LCA对大鼠棉球肉芽肿干重的影响(n=5,
$\bar{ x}\pm {{s}}$ )组别 棉球肉芽肿干重(m/mg) 抑制率(%) 模型组 48.1±10.05 — LCA组(20 mg/kg) 42.32±10.19 12.05 LCA组(40 mg/kg) 33.73±7.10** 29.90 吲哚美辛组(5 mg/kg) 24.67±7.39*** 48.73 **P<0.01,***P<0.001,与模型组比较。 -
如图3所示,LCA的安全剂量不高于3 μmol/ml,且在0.75和1.5 μmol/ml浓度下显著降低LPS诱导的RAW264.7细胞分泌的NO和TNF-α浓度,差异均具有统计学意义(P<0.01)。
-
如图4所示,LCA在1.5 μmol/ml浓度下显著抑制了炎症相关蛋白iNOS、COX-2蛋白的表达(P<0.001)。
豆豉姜活性成分9,9’-O-二-(E)-阿魏酰基-内消旋-5,5’-二甲氧基开环异落叶松树脂酚(LCA)抗炎作用研究
doi: 10.12206/j.issn.1006-0111.201912159
Anti-inflammatory study on 9,9'-O-di-(E)-feruloyl-meso-5,5'-dimethoxysecoisolariciresinol (LCA), an active ingredient in Litsea cubeba (Lour.) Pers
-
摘要:
目的 对傣药豆豉姜活性成分LCA在动物及细胞水平上的抗炎作用进行评价。 方法 采用耳肿胀和棉球肉芽肿模型进行LCA抗炎的体内药效学评价。采用脂多糖(LPS)诱导的小鼠单核巨噬细胞(RAW264.7),通过检测其一氧化氮(NO)、肿瘤坏死因子-α(TNF-α)的分泌量以及诱导型一氧化氮合酶(iNOS)、环氧合酶-2(COX-2)蛋白的表达水平,以评价LCA的体外抗炎活性。 结果 在小鼠耳肿胀的实验中,LCA组的耳肿胀度明显低于模型组,且高浓度组对小鼠耳肿胀的抑制率高于阳性药组;在大鼠棉球肉芽肿实验中,LCA高剂量组显著减轻了棉球肉芽肿的湿重与干重。此外,LCA显著减少LPS诱导的RAW264.7细胞中NO、TNF-α的分泌,降低iNOS、COX-2蛋白的表达。 结论 LCA具有显著的体内外抗炎作用,值得进一步深入研究。 -
关键词:
- LCA /
- 抗炎 /
- 耳肿胀 /
- 肉芽肿 /
- RAW264.7细胞
Abstract:Objective To evaluate the anti-inflammatory effects of LCA, which is the active component from Litsea cubeba (Lour.) Pers. Methods Pharmacodynamic evaluations of ear swelling and cotton ball granuloma models were used in animal experiments. In vitro experiment, lipopolysaccharide (LPS) stimulated monocyte macrophage RAW264.7 cells were used to evaluate the anti-inflammatory activity of LCA by detecting the secretions of nitric oxide (NO), tumor necrosis factor-α (TNF-α), the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein. Results In ear swelling experiment, the extent of ear swelling was significantly lower in the LCA treated group than the model group. The inhibition rate was greater in the high LCA concentration group than the positive drug group. In addition, LCA reduced the weight of cotton ball granuloma markedly. At the cell level, LCA significantly inhibited the secretions of NO, TNF-α and reduced the expressions of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. Conclusion LCA has significant anti-inflammatory effects in vitro and in vivo. The further studies are warranted for the development of anti-inflammatory drugs. -
Key words:
- LCA /
- anti-inflammatory /
- ear swelling /
- granuloma of cotton ball /
- RAW264.7 cell
-
表 1 LCA对二甲苯致小鼠耳廓肿胀的影响(n=10,
$\bar{ x}\pm {{s}}$ )组别 肿胀度(m/mg) 抑制率(%) 模型组 3.02±0.63 — LCA组(20 mg/kg) 2.52±0.29 16.56 LCA组(40 mg/kg) 1.89±0.54** 37.41 吲哚美辛组(8 mg/kg) 2.12±0.61* 29.80 *P<0.05,**P<0.01,与模型组比较。 表 2 LCA对大鼠棉球肉芽肿湿重的影响(n=5,
$\bar{ x}\pm {{s}}$ )组别 棉球肉芽肿湿重(m/mg) 抑制率(%) 模型组 300.1±53.26 — LCA组(20 mg/kg) 256.0±36.36 14.70 LCA组(40 mg/kg) 228.4±51.16*** 23.89 吲哚美辛组(5 mg/kg) 167.5±15.74*** 44.19 ***P<0.001,与模型组比较。 表 3 LCA对大鼠棉球肉芽肿干重的影响(n=5,
$\bar{ x}\pm {{s}}$ )组别 棉球肉芽肿干重(m/mg) 抑制率(%) 模型组 48.1±10.05 — LCA组(20 mg/kg) 42.32±10.19 12.05 LCA组(40 mg/kg) 33.73±7.10** 29.90 吲哚美辛组(5 mg/kg) 24.67±7.39*** 48.73 **P<0.01,***P<0.001,与模型组比较。 -
[1] ANTONISAMY P, DURAIPANDIYAN V, IGNACIMUTHU S, et al. Anti-diarrhoeal activity of friedelin isolated from Azima tetracantha lam. in wistar rats[J]. Sijbs,2015,1(1):34. doi: 10.22205/sijbs/2015/v1/i1/100440 [2] CHEN M, FU Q T, SONG X, et al. Preparation of resveratrol dry suspension and its immunomodulatory and anti-inflammatory activity in mice[J]. Pharm Biol,2020,58(1):8-15. doi: 10.1080/13880209.2019.1699123 [3] ANTONISAMY P, AGASTIAN P, KANG C W, et al. Anti-inflammatory activity of Rhein isolated from the flowers of Cassia fistula L. and possible underlying mechanisms[J]. Saudi J Biol Sci,2019,26(1):96-104. doi: 10.1016/j.sjbs.2017.04.011 [4] 翁丽丽, 邱金文, 宋启印. 榆耳发酵液醇沉物抗炎作用[J]. 吉林中医药, 2007, 27(10):56. doi: 10.3969/j.issn.1003-5699.2007.10.047 [5] MEIRA N A, KLEIN L C Jr, ROCHA L W, et al. Anti-inflammatory and anti-hypersensitive effects of the crude extract, fractions and triterpenes obtained from Chrysophyllum cainito leaves in mice[J]. J Ethnopharmacol,2014,151(2):975-983. doi: 10.1016/j.jep.2013.12.014 [6] RATHI M A, MEENAKSHI P, GOPALAKRISHNAN V K. Hepatoprotective activity of ethanolic extract of Alysicarpus vaginalis against nitrobenzene-induced hepatic damage in rats[J]. Sijbs,2015,1(2):60. doi: 10.22205/sijbs/2015/v1/i2/100420 [7] WANG J W, CHEN S S, ZHANG Y M, et al. Anti-inflammatory and analgesic activity based on polymorphism of cedrol in mice[J]. Environ Toxicol Pharmacol,2019,68:13-18. doi: 10.1016/j.etap.2019.02.005 [8] LIN B, ZHANG H, ZHAO X X, et al. Inhibitory effects of the root extract of Litsea cubeba (lour.) pers. on adjuvant arthritis in rats[J]. J Ethnopharmacol,2013,147(2):327-334. doi: 10.1016/j.jep.2013.03.011 [9] BOOTS A W, WILMS L C, SWENNEN E L, et al. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers[J]. Nutrition,2008,24(7-8):703-710. doi: 10.1016/j.nut.2008.03.023 [10] 刘玉明, 刘慧民, 蒋定文, 等. 复方苦参酊剂对炎症小鼠和大鼠的抗炎作用研究[J]. 中国药师, 2019, 22(11):2108-2110. doi: 10.3969/j.issn.1008-049X.2019.11.039 [11] LI Z P, HU J F, SUN M N, et al. Anti-inflammatory effect of IMMLG5521, a coumarin derivative, on Sephadex-induced lung inflammation in rats[J]. Int Immunopharmacol,2012,14(2):145-149. doi: 10.1016/j.intimp.2012.06.004 [12] 张志锋, 吴尤娇, 陈丽, 等. 藏药材白花刺参总皂苷的抗炎作用及机制[J]. 中药药理与临床, 2018, 34(5):49-52. [13] LIU X B, YANG B X, ZHANG L, et al. An in vivo and in vitro assessment of the anti-inflammatory, antinociceptive, and immunomodulatory activities of Clematis terniflora DC. extract, participation of aurantiamide acetate[J]. J Ethnopharmacol,2015,169:287-294. doi: 10.1016/j.jep.2015.04.009