-
松科(Pinaceae)植物马尾松(Pinusmassoniana Lamb.)主要产于江苏、安徽、河南、陕西及长江中下游各省区,资源丰富[1]。松叶“味苦,温;暖,无毒”,具有祛风燥湿、杀虫、止痒之功用。水煎、浸酒以外用或内服[2]用于治风湿痿痹、跌打损伤、湿疮、疥癣、慢性气管炎等症以及预防感冒、流脑。文献报道马尾松叶中的主要化学成分为挥发油、黄酮、多糖、木脂素和树脂等,现代药理研究表明马尾松叶提取物具有抗氧化、抗衰老、抑菌等多方面活性[3-15]。
近年来由于抗生素的滥用、器官移植、免疫抑制剂以及HIV患者的增多,深部真菌感染发病率逐年上升,其中白念珠菌是最主要的致病菌。氮唑类药物氟康唑是临床上首选的抗白念珠菌(Candida albicans)感染药物。但是长期和重复给药导致白念珠菌对氟康唑耐药越来越强。目前联合用药是恢复耐药真菌对治疗药物的敏感度,提高耐药菌对氟康唑的敏感性,治疗深部耐药菌感染的一种有效的治疗途径。从天然活性成分中寻找与现有的抗真菌药物联合发挥协同作用的小分子化合物是近年来的研究方向之一[16-20]。本文选用接近“传统水煎或浸酒法”的传统中药提取方法,用乙醇加热提取后,石油醚再萃取的方法得到马尾松叶低极性部位,通过测定马尾松叶低极性部位协同氟康唑抗耐药白念珠菌的MIC80值,同时,采用气相色谱-质谱的方法对低极性部位的化学成分进行分析鉴定,初步探究其联合氟康唑的体外抗真菌活性。
-
菌株选用临床分离耐药菌株白念珠菌103(氟康唑的MIC80>128.0 μg/ml)。采用美国临床和实验室标准协会(CLSI)提出的RPMI1640 培养基微量稀释法,取无菌96孔板,于每排1号孔加RPMI1640液体培养基100 μl作空白对照;3~12号孔各加新鲜配制的菌液100 μl,菌液浓度范围为(1~5)×103cfu/ml;2号孔分别加菌液160 μl和受试药物溶液40 μl;12号孔不含药物,只加菌液100 μl作阳性生长对照。2~11号孔进行倍比稀释,使各孔的最终药物(醚提取物、醇提取物和醚浸膏)浓度分别为250.0、125.0、62.5、31.25、15.63、7.81、3.91、1.95、0.98和0.49 μg/ml,对照品黄芩素浓度分别为128.0、64.0、32.0、16.0、8.0、4.0、2.0、1.0、0.5和0.25 μg/ml,各孔中DMSO含量均低于1%,氟康唑溶液的终浓度为8.0 μg/ml。96孔板于30℃恒温培养箱培养24 h后取出,读取受试药物与氟康唑(8.0 μg/ml)联用时的MIC80值。微量稀释法测试结果见表1。
表 1 马尾松叶3种提取物与氟康唑联用对体外白念珠菌103活性(MIC80)试验结果
化合物 MIC80 联合抑菌浓度
分数指数
(FICI)联合作用 单用(μg/ml) 与氟康唑联用(μg/ml)* 醚提取物 >250.0 >250.0 1.031 无关 醇提取物 >250.0 7.81 0.047 协同 醚浸膏 >250.0 31.25 0.094 协同 黄芩素 16.0 4.0 0.281 协同 氟康唑 >128.0 − − − *与8 μg/ml 氟康唑联合使用 协同药效的判定采用联合抑菌浓度分数指数(FICI),即联用抑菌时每种药物所需最低抑菌浓度(MIC)与单用这种药物抑菌时所需MIC的比值的和。当FICI≤0.5时,两种药物的相互作用效果被定义为具有协同作用;当FICI>0.5时,认为两种药物无相互作用。
-
按“1.3”项下实验条件对马尾松叶低极性部位进行分析,25 min得到马尾松叶低极性化学成分的总离子流图(图1)。共检测出30个峰,通过检索NIST08光谱数据库,按60%以上匹配率(SI和RSI均大于600,最大值1 000),并结合质谱裂解规律确定其化学成分。运用峰面积归一法通过Xcalibur化学工作站数据处理系统,测得各个化学成分在石油醚部位中的质量百分数。
-
由表1可见,各受试药物单用时,对照品黄芩素的MIC80为16.0 μg/ml,提示了其具有一定的抗菌活性,其他的化合物的MIC80均大于250 μg/ml。各受试药物与氟康唑(8.0 μg/ml)联用后,对照品黄芩素、醇提取物及醚浸膏的MIC80降至4.0~31.25 μg/ml,相应的FICI值均小于0.5,显示黄芩素、醇提取物、醚浸膏分别与氟康唑联用对耐药白念珠菌均具有协同活性,但醇提取物和醚浸膏的协同活性不及对照品黄芩素,醚浸膏协同活性小于醇提取物。醚提取物单用及与氟康唑联用的MIC80均大于250 μg/ml,FICI大于0.5,显示其单用及与氟康唑联用均没有协同氟康唑抗耐药白念珠菌活性。
如表2所示,本次GC-MS检测出30种成分,鉴定出17个化合物。统计出本次所测马尾松叶的低极性化学成分中含有烷烃4个(6.1%),甾烷类5个(4%),脂肪酸1个(0.75%),二萜5个(53.99%),其他峰均提示为聚硅氧烷(35.16%),其中含量较高的化学成分是:玛瑙酸(8.38%,见图2)、脱氢枞酸甲酯(8.41%,见图3)。
表 2 马尾松叶低极性化学成分分析结果
序号 保留时间(min) 相似度SI值 相似度RSI值 化合物 含量(%) 1 10.30 821 850 正十五烷 1.52 2 13.15 797 840 2,6,11,15-四甲基-十六烷 2.23 3 15.68 781 822 2,6,10-三甲基-十四烷 1.37 4 17.95 709 727 3-乙基-5-(2-乙基丁基)-十八烷 0.98 5 19.03 661 770 泪柏醚 0.68 6 19.96 641 684 1-单烯丙基甘油三甲基硅醚 0.75 7 20.00 639 670 3,3-亚乙基二氧基-5β-胆甾烷 1.00 8 20.78 688 700 玛瑙酸/贝壳杉萘甲酸 8.38 9 20.88 621 690 N-[24-氧代-3α-(三甲基硅氧基)-5β-胆安-24-基]甘氨酸甲酯 0.51 10 20.96 636 739 24, 25-二羟基维生素D3 / 24R, 25-二羟胆钙化醇 1.11 11 21.16 609 633 17-乙酰氧基-4,4,10,13-四甲基-7-氧代-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊烷(a)菲-3-基,乙酸 0.61 12 21.38 777 915 隐青霉酸甲酯 / 山莨菪碱酸甲酯 /海松酸甲酯 4.62 13 21.45 626 636 3-羟基-2,5,5,8a-四甲基-1,4,4a,5,6,7,8,8a-八氢萘-1-羧酸,2-三甲基硅乙基酯 31.90 14 21.79 645 662 3,11,18-三乙酰氧基-3,19:14,15-二环氧孕烷-20-酮 0.77 15 21.87 625 765 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-十六甲基八硅氧烷 1.50 16 22.09 841 889 脱氢枞酸甲酯 8.41 17 22.29 676 788 1,1,3,3,5,5,7,7,9,9,11,11,13,13-十四甲基七硅氧烷 1.30
GC-MS analysis of low polarity extracts from Pinusmassoniana Lamb. leaves and study on their synergetic activity of fluconazole against fluconazole-resistant Candida albicans
-
摘要:
目的 研究马尾松叶低极性部位的主要化学成分,以及其与氟康唑联用对氟康唑耐药白念珠菌的抗真菌活性。 方法 马尾松叶经80%乙醇热提取后,用石油醚萃取得到低极性部位,运用GC-MS法检测其化学成分,所测结果与标准谱库进行比对分析,用峰面积归一法计算各个成分的相对含量。采用棋盘式微量稀释法测试低极性部位协同氟康唑对耐药白念珠菌的最小抑菌浓度(MIC80)。 结果 从低极性部位中检测出30种成分,鉴定了17个化学成分;马尾松叶80%乙醇提取物、低极性部位及石油醚提取物协同氟康唑对耐药白念珠菌的最小抑菌浓度(MIC80)分别为7.81 μg/ml、31.25 μg/ml、>250 μg/ml。 结论 马尾松叶80%乙醇提取物及低极性部位具有协同氟康唑抗耐药白念珠菌活性;马尾松叶低极性部位协同氟康唑抗耐药白念珠菌活性的有效成分可能是其中的二萜类化合物(53.99%)。 Abstract:Objective To investigate the main chemical constituents of the low polarity extracts from pinusmassoniana Lamb. leaves and their synergetic activity with fluconazole against fluconazole-resistant Candida albicans. Methods The pinusmassoniana leaves were extracted with 80% ethanol, and then the extracts were extracted by petroleum ether to obtain the low polarity extracts. The chemical components were detected by GC-MS and elucidated by the comparison with the standard mass spectral data. The relative contents in percentage were calculated using the area normalization method. The minimal inhibitory concentrations (MIC80) of fluconazole-resistant Candida albicans strains by the low polarity extracts in combination with fluconazole were determined by checkerboard microdilution assay. Results 30 components were detected from the low polarity extracts, and 17 components were identified. The minimum inhibitory concentration (MIC80) of the 80% ethanol extracts, the low polarity extracts and the petroleum ether extracts from the pinusmassoniana leaves combined with fluconazole against fluconazole-resistant Candida albicans were 7.81 μg/ml, 31.25 μg/ml and >250 μg/ml, respectively. Conclusion The 80% ethanol extracts of pinusmassoniana leaves and its low polarity extracts have synergistic activity combined with fluconazole onfluconazole-resistant Candida albicans. The diterpenoids (53.99%) may be the effective components of the low polarity extracts. -
表 1 马尾松叶3种提取物与氟康唑联用对体外白念珠菌103活性(MIC80)试验结果
化合物 MIC80 联合抑菌浓度
分数指数
(FICI)联合作用 单用(μg/ml) 与氟康唑联用(μg/ml)* 醚提取物 >250.0 >250.0 1.031 无关 醇提取物 >250.0 7.81 0.047 协同 醚浸膏 >250.0 31.25 0.094 协同 黄芩素 16.0 4.0 0.281 协同 氟康唑 >128.0 − − − *与8 μg/ml 氟康唑联合使用 表 2 马尾松叶低极性化学成分分析结果
序号 保留时间(min) 相似度SI值 相似度RSI值 化合物 含量(%) 1 10.30 821 850 正十五烷 1.52 2 13.15 797 840 2,6,11,15-四甲基-十六烷 2.23 3 15.68 781 822 2,6,10-三甲基-十四烷 1.37 4 17.95 709 727 3-乙基-5-(2-乙基丁基)-十八烷 0.98 5 19.03 661 770 泪柏醚 0.68 6 19.96 641 684 1-单烯丙基甘油三甲基硅醚 0.75 7 20.00 639 670 3,3-亚乙基二氧基-5β-胆甾烷 1.00 8 20.78 688 700 玛瑙酸/贝壳杉萘甲酸 8.38 9 20.88 621 690 N-[24-氧代-3α-(三甲基硅氧基)-5β-胆安-24-基]甘氨酸甲酯 0.51 10 20.96 636 739 24, 25-二羟基维生素D3 / 24R, 25-二羟胆钙化醇 1.11 11 21.16 609 633 17-乙酰氧基-4,4,10,13-四甲基-7-氧代-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊烷(a)菲-3-基,乙酸 0.61 12 21.38 777 915 隐青霉酸甲酯 / 山莨菪碱酸甲酯 /海松酸甲酯 4.62 13 21.45 626 636 3-羟基-2,5,5,8a-四甲基-1,4,4a,5,6,7,8,8a-八氢萘-1-羧酸,2-三甲基硅乙基酯 31.90 14 21.79 645 662 3,11,18-三乙酰氧基-3,19:14,15-二环氧孕烷-20-酮 0.77 15 21.87 625 765 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-十六甲基八硅氧烷 1.50 16 22.09 841 889 脱氢枞酸甲酯 8.41 17 22.29 676 788 1,1,3,3,5,5,7,7,9,9,11,11,13,13-十四甲基七硅氧烷 1.30 -
[1] 中国科学院中国植物志编辑委员会. 中国植物志: 第七卷[M]. 北京: 科学出版社, 1978. [2] 江苏新医学院. 中药大辞典(上册)[M]. 上海: 上海科学技术出版社, 1995. [3] 刘东彦, 石晓峰. 药用松针的研究进展[J]. 中药材, 2012, 35(10):1701-1705. [4] MITSUYOSHI YATAGAI, YONG HONG. Chemical composition of the essential oil of Pinusmassoniana Lamb[J]. JE OR,1997,9(4):485-487. [5] SHEN Z B, THEANDER O. Flavonoid glycosides from needles of Pinusmassoniana[J]. Phytochemistry,1985,24(1):155-158. doi: 10.1016/S0031-9422(00)80826-2 [6] 肖靖萍, 任宇红. 松针抑菌作用的研究[J]. 食品科学, 1994, 15(2):52. [7] 杨天明, 夏德超, 朱景申. 松针的研究进展[J]. 中国药师, 2002, 5(12):748-749. doi: 10.3969/j.issn.1008-049X.2002.12.025 [8] 张万里, 乔润香, 尹飞, 等. 13种植物提取物对5种果蔬病原真菌的抑菌活性[J]. 华南农业大学学报, 2009, 30(2):40-43. doi: 10.3969/j.issn.1001-411X.2009.02.011 [9] 赵桂芝, 寿旦, 俞忠明, 等. 松针提取物的药理学研究进展[J]. 现代医院, 2010, 10(10):14-16. doi: 10.3969/j.issn.1671-332X.2010.10.005 [10] 周文美, 程兰香, 赵辰路, 等. 马尾松松针中莽草酸的提取工艺研究[J]. 江苏农业科学, 2013, 41(11):314-316. doi: 10.3969/j.issn.1002-1302.2013.11.122 [11] 王晓梅, 张忠山, 吴酬飞, 等. 马尾松松针多酚的提取及其抗氧化活性[J]. 湖州师范学院学报, 2018, 40(4):30-34. doi: 10.3969/j.issn.1009-1734.2018.04.007 [12] 高治平, 刘刚, 刘玉玲, 等. 马尾松松针儿茶素提取工艺研究[J]. 应用化工, 2011, 40(3):420-421, 424. doi: 10.3969/j.issn.1671-3206.2011.03.014 [13] 冯卫生, 王彦志, 郑晓珂, 等. 马尾松松针中化学成分的分离与结构鉴定[J]. 药学学报, 2004, 39(3):190-193. doi: 10.3321/j.issn:0513-4870.2004.03.008 [14] 郑光耀, 宋强, 周维纯, 等. 马尾松松针甾醇的精制及气相色谱-质谱分析[J]. 林产化学与工业, 2009, 29(S1):210-212. [15] 毕跃峰, 郑晓珂, 刘宏民, 等. 马尾松松针化学成分的研究[J]. 药学学报, 2001, 36(11):832-835. doi: 10.3321/j.issn:0513-4870.2001.11.007 [16] 申玲, 姜远英, 曹永兵. 植物成分协同抗真菌作用的研究进展[J]. 中国真菌学杂志, 2013, 8(1):55-60. doi: 10.3969/j.issn.1673-3827.2013.01.014 [17] 董怀怀, 王元花, 廖泽彬, 等. 芒果苷协同氟康唑抗耐药白念珠菌作用研究[J]. 中国真菌学杂志, 2017, 12(2):78-82, 85. doi: 10.3969/j.issn.1673-3827.2017.02.004 [18] 郝雨濛, 蔡瞻, 倪廷峻弘, 等. 新型协同氟康唑抗耐药白念珠菌化合物的设计合成及活性研究[J]. 解放军药学学报, 2018, 34(6):477-483. [19] 赵晶, 李冉, 代黎, 等. 协同氟康唑抗耐药白念珠菌化合物的设计合成及活性研究[J]. 药学实践杂志, 2016, 34(2):129-134. doi: 10.3969/j.issn.1006-0111.2016.02.009 [20] 王元花, 阎芳, 金永生. 甘草有效成分的提取及协同氟康唑抗真菌活性研究[J]. 药学服务与研究, 2017, 17(3):218-222. [21] 刘康柯, 曹小燕. 松针有效成分提取及药理活性研究进展[J]. 广州化工, 2018, 46(13):6-8. doi: 10.3969/j.issn.1001-9677.2018.13.004 [22] 曾维才, 贾利蓉. 松针提取物抑菌作用的研究[J]. 食品科学, 2009, 30(7):87-90. doi: 10.3321/j.issn:1002-6630.2009.07.020 [23] 徐丽珊, 张萍华, 张敏欢. 松针提取物的抑菌作用初探[J]. 食品科学, 2009, 30(1):38-41. doi: 10.3321/j.issn:1002-6630.2009.01.008 [24] 刘文朵, 于新, 刘淑宇, 等. 马尾松针系统溶剂提取物的抑菌活性比较研究[J]. 中国食品学报, 2013, 13(9):133-138. [25] 张卫丽. 马尾松松针有效成分的提取及药理活性研究[D]. 广州: 广东工业大学, 2013. [26] 胡文杰, 李阁, 李冠喜. 马尾松松针挥发油化学成分及抗氧化活性研究[J]. 中国粮油学报, 2018, 33(12):42-48. doi: 10.3969/j.issn.1003-0174.2018.12.008 [27] 张扬, 章建民, 马相锋, 等. 不同采集时间对马尾松针中主要成分的影响[J]. 中华中医药杂志, 2013, 28(2):516-519. [28] 李洪玉, 寿旦, 李亚平, 等. 不同产地马尾松针挥发油的GC-MS分析[J]. 中华中医药学刊, 2011, 29(1):78-81. [29] 郝强, 哈成勇. 南方马尾松松针挥发油成分的气相色谱/质谱分析[J]. 分析化学, 2000, 28(3):300-302. doi: 10.3321/j.issn:0253-3820.2000.03.009 [30] 张晓月, 杨晓芳, 肖培云, 等. 超临界CO2萃取不同产地云南松松针挥发油及其GC-MS分析[J]. 中国实验方剂学杂志, 2020, 26(11):161-169. [31] 王焱, 叶建仁. 固相微萃取法和水蒸气蒸馏法提取马尾松枝条挥发物的比较[J]. 南京林业大学学报(自然科学版), 2007, 31(1):78-80. [32] 钱珊, 高成, 马兴梅, 等. 松香酸及其衍生物的生物活性研究进展[J]. 西华大学学报(自然科学版), 2020, 39(6):108-114. doi: 10.12198/j.issn.1673-159X.3358 [33] 罗云龙, 沈明贵, 王丹, 等. 脱氢枞酸及其衍生物生物活性的研究进展[J]. 化学通报, 2018, 81(2):122-128. [34] XIN Z Y, LU Y L, XING X L, et al. Synthesis of (−)-agathic acid and (−)-copalic acid from andrographolide via a regioselective Barton-McCombiereaction[J]. Tetrahedron,2016,72(4):555-562. [35] ZHOU Z, WANG X, ZHOU T T. Synthesis and antibacterial activity of benzenesulfonylhydrazone derivatives of methyl dehydroabietate[J]. Russ J Gen Chem,2019,89(4):819-823. [36] BURČOVÁ Z, KREPS F, GREIFOVÁ M, et al. Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts[J]. J Biotechnol,2018,282:18-24. doi: 10.1016/j.jbiotec.2018.06.340