留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

泰山白首乌内生真菌多样性及其抗肿瘤活性研究

冯坤苗 吴思佳 陈文华 代威 徐凌川 韩婷

张哲, 孙卓然, 潘鹏超, 陈啸飞, 柴逸峰. 复方金钱草颗粒化学成分的UHPLC-Q-TOF/MS分析[J]. 药学实践与服务, 2022, 40(2): 146-151, 156. doi: 10.12206/j.issn.1006-0111.202105117
引用本文: 冯坤苗, 吴思佳, 陈文华, 代威, 徐凌川, 韩婷. 泰山白首乌内生真菌多样性及其抗肿瘤活性研究[J]. 药学实践与服务, 2021, 39(6): 542-548. doi: 10.12206/j.issn.1006-0111.202108089
ZHANG Zhe, SUN Zhuoran, PAN Pengchao, CHEN Xiaofei, CHAI Yifeng. UHPLC-Q-TOF/MS analysis of chemical constituents in compound Jinqiancao granules[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(2): 146-151, 156. doi: 10.12206/j.issn.1006-0111.202105117
Citation: FENG Kunmiao, WU Sijia, CHEN Wenhua, DAI Wei, XU Lingchuan, HAN Ting. Anti-tumor activities of endophytes from Cynanchum bungei Decne.[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(6): 542-548. doi: 10.12206/j.issn.1006-0111.202108089

泰山白首乌内生真菌多样性及其抗肿瘤活性研究

doi: 10.12206/j.issn.1006-0111.202108089
详细信息
    作者简介:

    冯坤苗,硕士,助教,研究方向:中药活性物质,Email:Fengkm1103@163.com

    通讯作者: 徐凌川,学士,教授,研究方向:中药、生药鉴定与质量评价及药用真菌资源开发,Email:xulingchuan518@sina.com韩 婷,博士,教授,中药资源与品质调控,Email:hanting@smmu.edu.cn
  • 中图分类号: R285;R284.1

Anti-tumor activities of endophytes from Cynanchum bungei Decne.

  • 摘要:   目的  分析白首乌内生真菌多样性及其种群结构分布规律,挖掘潜在的微生物资源及功能,为寻找新的抗肿瘤内生真菌提供理论基础。  方法  通过传统的内生菌分离法以及18sRNA高通量测序技术,对不同组织部位、不同物种和不同产地白首乌内生真菌群落组成进行多样性分析;采用 MTT 法检测泰山白首乌内生真菌的细胞毒活性。  结果  从泰山白首乌的根、茎、叶中共分离得到 90个形态的内生真菌,其中,镰刀菌属Fusarium和链格孢属Alternaria 为优势菌属;泰山白首乌根、茎、叶分别有8、9和13个属,链格孢属Alternaria和炭疽菌属Colletotrichum为共有属; 13株泰山白首乌内生真菌对HEPG2、HGC27、HT-29和HeLa肿瘤细胞株产生抗肿瘤活性,占总数的14.4%,极细链格孢菌A. tenuissima LTJ2和链格孢菌A. alternata LTJ6抗肿瘤活性显著。  结论  泰山白首乌内生真菌具有丰富的多样性,部分菌株具有显著的抗肿瘤活性,为寻找新的抗肿瘤药物提供了菌株资源。
  • 复方金钱草颗粒由广金钱草、车前草、光石韦以及玉米须四味中药材组成,现执行标准为《中国药典》(一部)2015年版及国家食品药品监督管理总局药品补充批件(2016B00026)。该药具有清热利湿、通淋排石的作用,在临床上用于治疗湿热所致的热淋、石淋,症见尿频、尿急、尿痛、腰痛的患者,以及泌尿系结石、尿路感染见上述证候者[1]。现代药理学研究也显示复方金钱草颗粒具有防治草酸钙结石形成、促进输尿管蠕动和增加尿量、抗炎[2-5]及增加冠脉血流量、保肝利胆[3-5]、免疫调节等作用[5]。复方金钱草颗粒中的化学成分包含黄酮类[5-8]、甾醇类[5,7-9]、生物碱类[5-7]、萜类[5,7,9]、酚酸类[5-6,8]、挥发油[5,7]、多糖类等[6-7]。由于复方金钱草颗粒成分复杂,目前尚无全面的化学成分鉴定工作。本研究致力于建立起一种快速有效的系统分析方法,同时定性地鉴别其多种化合物成分,为其有效成分研究提供依据。

    分析纯无水乙醇(中国医药集团上海化学试剂公司);质谱纯甲酸、质谱纯乙腈、0.22 µm滤膜(德国Merck集团);复方金钱草颗粒(规格:10g,广西万通制药有限公司)

    BP121S电子分析天平(德国Sartorius公司);Milli-Q A10超纯水净化系统(美国Millipore公司);KQ-400KDB超声波清洗器(400W, 40KHz;昆山市超声仪器有限公司);X1R-230 V台式离心机(美国Thermo Fisher Scientific公司);Agilent 1290超高效液相色谱仪、Agilent 6538四极杆飞行时间质谱仪(美国安捷伦公司)。

    2.1.1   色谱条件

    采用Agilent 1290超高效液相色谱仪(UHPLC),色谱柱为XBridge BEH C18柱(2.1 mm×100 mm, 2.5 µm ),柱温为40 ℃,进样量为3 µl,流动相由0.1%甲酸水(A)和0.1%甲酸乙腈(B)组成,梯度洗脱,洗脱条件见表1,分析时间为19 min,流速为0.4 ml/min。

    表  1  流动相梯度洗脱条件
    时间(t/min)A(%)B(%)
    0982
    2982
    124060
    17298
    19298
    下载: 导出CSV 
    | 显示表格
    2.1.2   质谱条件

    采用Agilent 6538四极杆飞行时间质谱仪(Q-TOF/MS),质谱参数如下:电喷雾离子源(正离子模式);质谱扫描范围: 50~1500 m/z;干燥气温度为350 ℃;干燥气流速为11 L/min;雾化气压力为45 psig;毛细管电压为4000 V;碎片电压为120 V;Skimmer电压为60 V;参比离子m/z为121.0509和922.0098。

    精密称取2.0 g复方金钱草颗粒,置于50 ml具塞三角烧瓶中,加入55 %乙醇提取溶剂25 ml,称定质量并记录,在55 ℃水浴中超声加热回流提取药液10 min,经室温冷却后,再次称定并用提取溶剂补足损失的质量,15000 r/min离心20 min,取上清液并经0.22 µm滤膜过滤,得提取液。

    复方金钱草颗粒由广金钱草、车前草、光石韦和玉米须等四味中药材组成。通过搜索中国知网、万方数据、PubMed等网站中关于复方金钱草颗粒及其四味中药材的文献,检索上海有机化学研究所的化学专业数据库、TCMID来建立复方金钱草颗粒化学成分数据库,其相关信息包括化合物中英文名称、分子式以及相对分子质量。

    复方金钱草颗粒UHPLC-Q-TOF/MS总离子流图见图1。应用Qualitative Analysis质谱分析软件计算可能的分子组成(误差<8 ppm),结合复方金钱草颗粒化学成分数据库,对复方金钱草颗粒提取溶液所得色谱图上色谱峰进行分析,利用精确分子量匹配和碎片离子归属策略,初步尝试鉴定出51个化学成分,结果如表2所示。

    图  1  复方金钱草颗粒UHPLC-Q-TOF/MS总离子流图
    表  2  复方金钱草颗粒化学成分鉴别分析结果
    序号名称分子式M+Xm/z质量误差(ppm)
    1 b水苏糖C24 H42 O21(M+H)+667.2312666.22443.86
    2 b桂皮酸C9 H8 O2(M+H)+149.0594148.052−3.2
    3 abd原儿茶酸C7 H6 O4(M+H)+155.0335154.0261−3.44
    /龙胆酸
    4 a广金钱草内酯C8 H13 N O3(M+H)+172.0968171.0894−0.75
    5 bd咖啡酸C9 H8 O4(M+H)+181.0493180.0421−0.79
    6 abcd绿原酸C16 H18 O9(M+H)+355.1028354.09551.1
    7 b丁香酸C9 H10 O5(M+H)+199.0607198.05311.24
    8 a香橙素C15 H12 O6(M+H)+289.0716288.06412.62
    9 ab黄芩素C15 H10 O5(M+H)+271.0609270.05352.66
    /染料木素
    /芹菜素
    10 c(R/S)-eriodictyol-8-C-β-D-glucopyranosideC21 H22 O11(M+H)+473.1063450.1183.88
    11 a芸香苷C27 H30 O16(M+H)+611.1623610.15512.79
    12 ac槲皮素C15 H10 O7(M+H)+303.0505302.04321.78
    /3,5,7,4'-tetrahydroxy-coumaronochromone
    /6-羟基木犀草素
    13 b大车前苷C17 H24 O10(M+H)+389.1458388.13854.04
    14 bd对-香豆酸C9 H8 O3(M+H)+165.0547164.04761.45
    15 ahomoadoniverniteC26 H28 O15(M+H)+581.152580.14452.96
    /刺苞菊苷
    16 a维采宁-2C27 H30 O15(M+H)+595.1672594.15972.08
    17 b桃叶珊瑚苷元C9 H12 O4(M+H)+185.0816184.07423.46
    18 a6-C-glycopyranosyl-8-C-xyloeyl apigeninC26 H28 O13(M+H)+549.1621548.15524.12
    /6-C-glycopyranosyl-8-C-glycopyranosyl apigenin
    19 ab阿魏酸C10 H10 O4(M+H)+195.0654194.0580.71
    /咖啡酸甲酯
    20 b黑麦草内酯C11 H16 O3(M+H)+197.117196.1097−1.16
    21 b车前黄酮苷C21 H20 O11(M+H)+449.1089448.10162.34
    22 b木犀草素-7-O-葡萄糖苷C21 H20 O11(M+H)+449.1089448.10162.34
    23 a异槲皮苷C21 H20 O12(M+H)+465.1033464.09652.16
    /紫花杜鹃素丁
    /6-hydroxyl luteolin 7-O-glucoside
    24 c杧果苷C19 H18 O11(M+H)+423.0933422.08612.84
    /异杧果苷
    25 a山柰酚-3-O-芸香糖苷C27 H30 O15(M+H)+595.1672594.15972.08
    26 a维采宁-1C26 H28 O14(M+H)+565.1572564.14983.42
    /维采宁-3
    /异夏佛塔雪轮苷
    /夏弗塔雪轮苷
    27 abd对羟基苯甲酸C7 H6 O3(M+H)+139.039138.03170.31
    /水杨酸
    /原儿茶醛
    28 a异荭草素C21 H20 O11(M+H)+449.1089448.10162.34
    29 a牡荆素C21 H20 O10(M+H)+433.1137432.10641.65
    /异牡荆素
    /大波斯菊苷
    /染料木苷
    30 a三叶豆苷C21 H20 O11(M+H)+449.1089448.10162.34
    31 ab5, 7-dihydroxy-2', 4'-dimthoxy-isoflavanone-7-O-β-glucopyranosideC23 H26 O11(M+H)+479.1563478.1493.11
    /[(2R,3S,4S,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate
    /木通苯乙醇苷A
    /木通苯乙醇苷B
    /车前草苷 A
    /车前草苷 B
    /3,4-Dihydroxyphenethylalcohol-6-O-caffeoyl-β-D-glucoside
    /去鼠李糖洋丁香酚苷
    32 b车前草苷DC29 H36 O16(M+H)+663.19640.1989−2.26
    /大车前苷
    33 b异洋丁香酚苷C29 H36 O15(M+H)+647.195624.2038−2.67
    /洋丁香酚苷
    /Beta-D-Glucopyranoside, 2-(3,4-dihydroxyphenyl)ethyl 3-O-(6-deoxy-alpha-L-mannopyranosyl)-, 6-(3-(3,4-dihydroxyphenyl)-2-propenoate), (E)-
    34 b黄芩苷C21 H18 O11(M+H)+447.0938446.08643.35
    35 b高车前苷C22 H22 O11(M+H)+463.1239462.1171.7
    36 a5, 7-Dihydroxy-2'-methoxy-3', 4'-methylenedioxy-isoflavanone-7-O-β-glucopyranosideC23 H24 O12(M+H)+493.136492.12822.96
    37 abcd山柰酚C15 H10 O6(M+H)+287.0558286.04821.45
    /木犀草素
    /2’-Hydroxygenistein
    /高山黄芩素
    38 a5, 7-Dihydroxy-2', 3', 4'-trimethoxy-isoflavanone-7-O-β-glucopyranosideC24 H28 O12(M+H)+509.1668508.15962.93
    39 b异角胡麻苷C31 H40 O15(M+Na)+675.2281652.23913.69
    /角胡麻苷
    40 a5, 7-Dihydroxy-2'-methoxy-3', 4'-methylenedioxy-isoflavanoneC17 H14 O7(M+H)+331.0824330.07482.45
    41 a5, 7-Dihydroxy-2', 3', 4'-trimethoxy-isoflavanoneC18 H18 O7(M+H)+347.112346.105−0.6
    42 aHomoferreirinC17 H16 O6(M+H)+317.1034316.09593.82
    43 a大豆皂苷 IC48 H78 O18(M+H)+965.5112942.52142.75
    44 b桃叶珊瑚苷C15 H22 O9(M+H)+347.1352346.12794.44
    45 d亚油酸C18 H32 O2(M+H)+303.2303280.24082.2
    46 d邻苯二甲酸二丁酯C16 H22 O4(M+H)+301.1421278.15314.47
    47 dBis[(2R)-2-ethylhexyl] benzene-1, 2-dicarboxylateC24 H38 O4(M+H)+413.2681390.27987.14
    注:a. 广金钱草中的成分;b. 车前草中的成分;c. 光石韦中的成分;d. 玉米须中的成分
    下载: 导出CSV 
    | 显示表格

    对于以上鉴别分析结果,在数据匹配的基础上,我们还利用峰物质特征的同位素分布进行验证。以4号峰广金钱草内酯和11号峰芸香苷为例,采用Qualitative Analysis软件的“显示预测的同位素分布”功能分别对这两种化合物的同位素峰进行匹配,其结果见图2图3。图中结果明显可见,该两种离子理论上的同位素峰强度比、出峰位置(由方框表示)与实际测得的(由竖线峰表示)结果吻合良好,4号化合物广金钱草内酯的吻合分数为99.94,11号化合物芸香苷的吻合分数为95.28。以上结果证明鉴别分析结果准确。

    图  2  4号化合物离子峰的理论同位素强度与实际同位素强度匹配结果
    图  3  11号化合物离子峰的理论同位素强度与实际同位素强度匹配结果

    实验中我们发现复方金钱草颗粒中含有多组同分异构体,本文采用ACD/ChemSketch软件计算化合物的油水分配系数logP值判断出峰顺序。以16号峰维采宁-2与25号峰山柰酚-3-O-芸香糖苷为例,在UHPLC-Q-TOF/MS总离子流图中,提取m/z为595.1672的离子,结果见图4

    图  4  16号峰(维采宁-2)和25号峰(山柰酚-3-O-芸香糖苷)的离子色谱图

    维采宁-2和山柰酚-3-O-芸香糖苷的结构式如图5所示。采用ACD/ChemSketch软件计算它们的油水分配系数logP值分别为−0.10(±0.94)和1.96(±1.45),表明山柰酚-3-O-芸香糖苷的疏水性更强,在反相色谱柱中的保留时间则越长,确定这两个化合物的出峰顺序维采宁-2在前,山柰酚-3-O-芸香糖苷在后,从而对异构体的色谱峰进行相应归属。

    图  5  维采宁-2 (A)和山柰酚-3-O-芸香糖苷(B) 的结构式

    我们还用此方法对同一分子式的一组多个同分异构体进行logP值的排序,以确定这些成分的出峰顺序来进行归属。例如在总离子流图中,第21、22、28、30号峰为一组同分异构体,分别为车前黄酮苷、木犀草素-7-O-葡萄糖苷、异荭草素和三叶豆苷,其结构式如图6所示。在UHPLC-Q-TOF/MS总离子流图中,提取m/z为449.1089的离子,结果见图7。对它们的油水分配系数logP值进行排序,可知该4种同分异构体的出峰顺序,结果如表3所示。

    图  6  车前黄酮苷(A)、木犀草素-7-O-葡萄糖苷(B)、异荭草素(C)和三叶豆苷(D)的结构式
    图  7  车前黄酮苷、木犀草素-7-O-葡萄糖苷、异荭草素和三叶豆苷的离子色谱图
    表  3  同分异构体(21、22、28和30号峰)的归属结果
    出峰编号化合物名称logP值保留时间(t/min)
    21车前黄酮苷−0.30±0.6411.320
    22木犀草素-7-O-葡萄糖苷−0.09±0.6411.675
    28异荭草素1.58±0.8813.999
    30三叶豆苷1.95±1.4314.355
    下载: 导出CSV 
    | 显示表格

    本研究采用UHPLC-Q-TOF/MS技术,实现了对中成药复方金钱草颗粒中多成分的快速定性分析,共鉴定出2个苯乙醇苷类、1个低聚糖类、8个酚酸类、27个黄酮类、1个生物碱类、5个萜类、1个脂肪酸类、2个酯类成分(共47个活性成分),该技术为中药复方多成分分析提供了一种有效、可靠的方法,也同样适用于其他中药复方复杂体系的化学成分分析。

    由于中药复方化学成分较单味药材更多更复杂,因而同分异构体的情况非常普遍。使用的四极杆复合飞行时间质谱(Q-TOF)在保持了较高的检测灵敏度以及质量准确性的前提下,可以对样本中所有的成分的质荷比进行全谱采集。这种技术使数据采集效率有了极大的提高,更加适用于中药重要复杂体系化学成分的鉴定。

    虽然本研究基于复方金钱草颗粒化学成分数据库,利用精确分子量匹配和碎片离子归属策略并辅以软件计算的方法鉴定出了多个化学成分,但仍有大量的同分异构体无法被有效地区分开来,因此,在下一步实验中,使用标准品对照的方法进行更精确地鉴定。

  • 图  1  泰山白首乌不同部位中内生真菌组成及占百分比(%,属)

    A 泰山白首乌根内生真菌组成(属);B 泰山白首乌茎内生真菌组成(属);C 泰山白首乌叶内生真菌组成(属)

    图  2  不同产地泰山白首乌内生真菌组成及所占百分比(%)

    A济南产泰山白首乌内生真菌组成(属);B临沂产泰山白首乌内生真菌组成(属);C泰安产泰山白首乌内生真菌组成(属)

    表  1  根据BLAST序列分离得到的泰山白首乌内生真菌

    属名基因库中接近种(登录号)相似度 (%)组织部位菌株数
    链格孢属A. alternata (MH368103.1)99 1 2 3
    A. alternata (MH716004.1)99 4 4
    A. alternata (MG669159.1)99 1 1
    A. alternata(MK07593.1)99 1 1
    A. alternata (MK392122.1)99 1 1
    A. alternata(MK659949.1)99 2 2
    A. alternata(KY859403.1)99 2 2
    A.alternata (KJ739880.1)99 2 2 1 5
    A. alternata (KY859403.1)99 1 1
    A. alternata (LN835252.1)991 1 2
    A. alternata (EF504974.1)78 1 1
    A. arborescens (MK460794.1)99 1 1
    A. brassicicola(MF167294.1)99 1 1 2
    A. burnsii(KR604840.1)100 1 1
    Alternaria sp.(KC139509.1)99 1 1
    Alternaria sp.(KC110624.1)99 1 1
    Alternaria sp.(KC147581.1)99 2 2
    Alternaria sp.(KU556507.1)99 1 1
    A.tenuissima(MG602685.1)99 3 3 6
    A. tenuissima (MK675103.1)99 2 2
    子囊菌属Ascomycota sp.(FJ999646.1)99 1 1
    曲霉菌属A. terreus var.floccosus (KP987086.1)99 1 1
    小檗属B. fortunei (MK850215.1) 1 1
    葡萄座腔菌属B. dothidea(HM156069.1) 1 1
    B. dothidea(KF294012.1)11
    双极霉属B. sorokiniana (HF934936.1) 1 1
    B. micropus(LT837454.1)82 1 1
    生赤壳属B. ochroleuca(EU273558.1) 1 1
    棒孢属C.cassiiola (MH569606.1) 1 1
    炭疽菌属C. acutatum(MG661733.1) 1 1
    C. capsici (EF016299.1) 1 1
    C. gloeosporioides (KM044004.1) 1 1
    C. nymphaeae (MH863840.1) 1 1
    间座壳属D. phaseolorum (MF379339.1) 1 1
    D. phaseolorum (KX866874.1) 1 1
    EmmiaE. lacerate(MF101401.1) 1 1
    突脐蠕孢属E. rostratum (MH746929.1) 1 1 2
    E. rostratum (MH746928.1) 1 1
    镰刀菌属F. nematophilum (KF577906.1) 2 2
    F. nematophilum (KX621959.1) 1 1
    F. oxysporum(MK673882.1) 1 1
    F. oxysporum (KM005080.1) 1 1
    F. oxysporum (KY910845.1) 1 1
    F. oxysporum(GU724513.1) 1 1
    F. solani f. batatas (AF178407.1) 6 7
    F. solani batatas (EU625405.1) 1 1
    F. solani batatas (MK571197.1) 1 1
    F. solani f. batatas (KM235740.1) 1 1
    F. solani f. batatas (KJ676962.1)98 1 1
    F. solani f. batatas (KU382502.1)98 2 2
    Fusarium sp.(FJ008989.1) 1 1
    Fusarium sp. (MH884151.1) 1 1
    小丛壳属G. cingulata (EF423544.1) 2 2
    球座菌属G. mangiferae(EU677803.1) 1 1
    孢菌属Pleosporaceae sp. (HQ832799.1) 1 1
    腔菌属Pleosporales sp. (APBSDSF25) 1 1
    P. cablin(MK568502.1)98 1 1
    毛球腔菌属Setosphaeria sp. (LT837842.1)92 1 1
    踝节菌属T. purpureogenus (KU981069.1) 1 1
    炭角菌属Xylariaceae sp. (MG669156.1) 1 1
    28303290
    下载: 导出CSV

    表  2  泰山白首乌内生菌菌株的抗肿瘤活性

    菌株抗肿瘤活性 (IC50, μg/ml)
    HGC27HEPG2HT-29HELA
    JTY66.34±1.1011.05±1.1529.84±5.78>40
    JTY107.87±1.096.53±0.2818.57±5.15>40
    JTJ119.92±1.136.59±0.565.94±0.8821.37±5.99
    JTJ182.61±0.353.20±0.423.55±0.309.96±2.38
    LTJ11.69±0.322.96±0.2413.23±1.667.41±1.47
    LTJ22.21±0.613.11±0.468.25±1.113.85±0.60
    LTJ35.34±0.895.10±1.2113.01±1.635.87±1.36
    LTJ61.58±0.381.46±0.393.63±1.236.24±0.49
    JTJ1321.76±0.68>4020.07±1.38>40
    LTJ521.43±0.3533.43±1.31>40>40
    LTJ1021.34±0.6529.81±0.32>40>40
    TTY727.89±1.0838.53±0.28>40>40
    TTY1818.25±0.24>40>4031.41±1.49
    阿霉素0.022±0.0030.034±0.010.030±0.0030.039±0.006
    下载: 导出CSV
  • [1] 彭蕴茹, 丁永芳, 李友宾, 等. 白首乌研究现状[J]. 中草药, 2013, 44(3):370-378. doi:  10.7501/j.issn.0253-2670.2013.03.026
    [2] 王光辉, 王琦, 时元林. 泰山四大名药[J]. 山东中医杂志, 2006, 25(3):203-204. doi:  10.3969/j.issn.0257-358X.2006.03.028
    [3] KIM Y, CHOI H, SHIN J, et al. Molecular discrimination of Cynanchum wilfordii and Cynanchum auriculatum by InDel markers of chloroplast DNA[J]. Molecules,2018,23(6):1337. doi:  10.3390/molecules23061337
    [4] SUN Y S, LIU Z B, WANG J H, et al. Aqueous ionic liquid based ultrasonic assisted extraction of four acetophenones from the Chinese medicinal plant Cynanchum bungei Decne[J]. Ultrason Sonochem,2013,20(1):180-186. doi:  10.1016/j.ultsonch.2012.07.002
    [5] HAN L, ZHOU X P, YANG M M, et al. Ethnobotany, phytochemistry and pharmacological effects of plants in genus Cynanchum Linn. (Asclepiadaceae)[J]. Molecules,2018,23(5):1194. doi:  10.3390/molecules23051194
    [6] CHEN W H, ZHANG Z Z, BAN Y F, et al. Cynanchum bungei Decne and its two related species for “Baishouwu”: a review on traditional uses, phytochemistry, and pharmacological activities[J]. J Ethnopharmacol,2019,243:112110. doi:  10.1016/j.jep.2019.112110
    [7] 孙彦敏, 王辉, 徐凌川. 近10年白首乌研究进展[J]. 中国中医药信息杂志, 2015, 27(7):131-136. doi:  10.3969/j.issn.1005-5304.2015.07.041
    [8] CUI J L, VIJAYAKUMAR V, ZHANG G. Partitioning of fungal endophyte assemblages in root-parasitic plant Cynomorium songaricum and its host Nitraria tangutorum[J]. Front Microbiol,2018,9:666. doi:  10.3389/fmicb.2018.00666
    [9] JIA M, CHEN L, XIN H L, et al. A friendly relationship between endophytic fungi and medicinal plants: a systematic review[J]. Front Microbiol,2016,7:906.
    [10] 顾晓洁, 解卓学, 吕嘉东, 等. 白首乌内生细菌分离鉴定及系统发育树分析[J]. 辽宁中医药大学学报, 2018, 20(6):52-56.
    [11] LI F, XUE F, YU X. GC-MS, FTIR and Raman analysis of antioxidant components of red pigments from Stemphylium lycopersici[J]. Curr Microbiol,2017,74(4):532-539. doi:  10.1007/s00284-017-1220-3
    [12] GU X J, REN K, YAO N, et al. Chemical constituents from endophytic fungus Plectosphaerella cucumerina YCTA2Z1 of Cynanchum auriculatum[J]. Chin Herb Med,2018,10(1):95-98. doi:  10.1016/j.chmed.2017.12.001
    [13] STIERLE A, STROBEL G, STIERLE D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew[J]. Science,1993,260(5105):214-216.[LinkOut doi:  10.1126/science.8097061
    [14] CHEN L, ZHANG Q Y, JIA M, et al. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds[J]. Crit Rev Microbiol,2014:1-20.
    [15] 沈湛云, 朱波, 张泉龙, 等. 不同产地玄参内生真菌种群结构的比较分析[J]. 中草药, 2019, 50(4):957-962. doi:  10.7501/j.issn.0253-2670.2019.04.025
    [16] 惠建超, 翟梅枝, 李梦歌, 等. 不同陕西生境核桃内生真菌多样性研究[J]. 河南农业大学学报, 2018, 52(6):956-966,982.
    [17] 贾敏. 薏苡内生真菌多样性及其与薏苡药材品质相关性研究[D]. 上海: 第二军医大学, 2014.
    [18] SUN Y, WANG Q, LU X D, et al. Endophytic fungal community in stems and leaves of plants from desert areas in China[J]. Mycol Prog,2012,11(3):781-790.[LinkOut
    [19] WU L, HAN T, LI W, et al. Geographic and tissue influences on endophytic fungal communities of Taxus chinensis var. mairei in China[J]. Curr Microbiol,2013,66(1):40-48. doi:  10.1007/s00284-012-0235-z
    [20] SEBASTIANES F L, CABEDO N, EL AOUAD N, et al. 3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum[J]. Curr Microbiol,2012,65(5):622-632. doi:  10.1007/s00284-012-0206-4
    [21] XU Y M, BASHYAL B P, LIU M X, et al. Cytotoxic cytochalasins and other metabolites from Xylariaceae sp. FL0390, a fungal endophyte of Spanish moss[J]. Nat Prod Commun,2015,10(10):1655-1658.
    [22] LI Y, GUO S, ZHU H. Statistical optimization of culture medium for production of exopolysaccharide from endophytic fungus Bionectria ochroleuca and its antitumor effect in vitro[J]. Excli J,2016,15:211-220.
  • [1] 郭灵怡, 刘艳超, 高路, 刘瑞瑶, 吕权真, 俞媛.  醋酸卡泊芬净单硬脂酸甘油酯纳米粒抗白色念珠菌感染的增效作用研究 . 药学实践与服务, 2025, 43(3): 136-142, 150. doi: 10.12206/j.issn.2097-2024.202310043
    [2] 冯广伟, 张静, 刘阳熙, 崔敏.  消化道穿孔患者术后继发念珠菌血流感染的病例分析 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202312012
    [3] 宋泽成, 马闪闪, 胡巧灵, 仲华, 王彦.  小檗碱与氟康唑合用抗氟康唑耐受白念珠菌的研究 . 药学实践与服务, 2025, 43(2): 87-91. doi: 10.12206/j.issn.2097-2024.202409047
    [4] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [5] 张紫璇, 高苑, 张利, 李佳莉, 徐希科, 祖先鹏.  中药防治急性肺损伤的活性成分及其作用机制研究进展 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202404079
    [6] 周娇, 郑建雨, 王思真, 杨峰.  mRNA肿瘤疫苗非病毒递送系统研究进展 . 药学实践与服务, 2025, 43(3): 109-116. doi: 10.12206/j.issn.2097-2024.202410034
    [7] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [8] 吴若南, 汤文敏, 高林, 吴岳林, 罗川, 缪震元.  RRx-001衍生物的合成和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202408053
    [9] 戴菲菲, 傅翔, 陈琼年, 俞苏纯.  上海某二级医院革兰阴性菌流行特征的回顾性分析 . 药学实践与服务, 2024, 42(12): 528-532. doi: 10.12206/j.issn.2097-2024.202305005
    [10] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [11] 黄韵, 张正银, 金英, 郑怡菁, 李铁军, 孙莉莉.  耐碳青霉烯类肺炎克雷伯菌及大肠埃希菌临床分离株耐药性及耐药基因分析 . 药学实践与服务, 2024, 42(10): 439-444. doi: 10.12206/j.issn.2097-2024.202309059
    [12] 史生辉, 石飞, 雷琼, 王亚峰, 吴雪花.  青藏高原肺结核合并念珠菌感染患者的病原菌分布特点及耐药率分析 . 药学实践与服务, 2024, 42(6): 260-262, 272. doi: 10.12206/j.issn.2097-2024.202304014
    [13] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
    [14] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [15] 尹小娟, 台力丽, 肖俊峰, 季波.  铜绿假单胞菌合并按蚊伊丽莎白菌肺部感染的病例分析 . 药学实践与服务, 2024, 42(5): 223-226. doi: 10.12206/j.issn.2097-2024.202310042
    [16] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  4306
  • HTML全文浏览量:  1470
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2021-10-25
  • 网络出版日期:  2021-12-27
  • 刊出日期:  2021-11-25

泰山白首乌内生真菌多样性及其抗肿瘤活性研究

doi: 10.12206/j.issn.1006-0111.202108089
    作者简介:

    冯坤苗,硕士,助教,研究方向:中药活性物质,Email:Fengkm1103@163.com

    通讯作者: 徐凌川,学士,教授,研究方向:中药、生药鉴定与质量评价及药用真菌资源开发,Email:xulingchuan518@sina.com韩 婷,博士,教授,中药资源与品质调控,Email:hanting@smmu.edu.cn
  • 中图分类号: R285;R284.1

摘要:   目的  分析白首乌内生真菌多样性及其种群结构分布规律,挖掘潜在的微生物资源及功能,为寻找新的抗肿瘤内生真菌提供理论基础。  方法  通过传统的内生菌分离法以及18sRNA高通量测序技术,对不同组织部位、不同物种和不同产地白首乌内生真菌群落组成进行多样性分析;采用 MTT 法检测泰山白首乌内生真菌的细胞毒活性。  结果  从泰山白首乌的根、茎、叶中共分离得到 90个形态的内生真菌,其中,镰刀菌属Fusarium和链格孢属Alternaria 为优势菌属;泰山白首乌根、茎、叶分别有8、9和13个属,链格孢属Alternaria和炭疽菌属Colletotrichum为共有属; 13株泰山白首乌内生真菌对HEPG2、HGC27、HT-29和HeLa肿瘤细胞株产生抗肿瘤活性,占总数的14.4%,极细链格孢菌A. tenuissima LTJ2和链格孢菌A. alternata LTJ6抗肿瘤活性显著。  结论  泰山白首乌内生真菌具有丰富的多样性,部分菌株具有显著的抗肿瘤活性,为寻找新的抗肿瘤药物提供了菌株资源。

English Abstract

张哲, 孙卓然, 潘鹏超, 陈啸飞, 柴逸峰. 复方金钱草颗粒化学成分的UHPLC-Q-TOF/MS分析[J]. 药学实践与服务, 2022, 40(2): 146-151, 156. doi: 10.12206/j.issn.1006-0111.202105117
引用本文: 冯坤苗, 吴思佳, 陈文华, 代威, 徐凌川, 韩婷. 泰山白首乌内生真菌多样性及其抗肿瘤活性研究[J]. 药学实践与服务, 2021, 39(6): 542-548. doi: 10.12206/j.issn.1006-0111.202108089
ZHANG Zhe, SUN Zhuoran, PAN Pengchao, CHEN Xiaofei, CHAI Yifeng. UHPLC-Q-TOF/MS analysis of chemical constituents in compound Jinqiancao granules[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(2): 146-151, 156. doi: 10.12206/j.issn.1006-0111.202105117
Citation: FENG Kunmiao, WU Sijia, CHEN Wenhua, DAI Wei, XU Lingchuan, HAN Ting. Anti-tumor activities of endophytes from Cynanchum bungei Decne.[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(6): 542-548. doi: 10.12206/j.issn.1006-0111.202108089
  • 泰山白首乌来源于为萝摩科(Asclepiadaceae)鹅绒藤属(Cynanchum Linn.)植物戟叶牛皮消Cynanchum bungei Decne. 的干燥块根,《本草备要》记载:“具有养血补血、补肝肾、强筋骨和润肠通便的作用”,也被誉为泰山四大名药之首[1-2]。研究表明,泰山白首乌的主要活性成分为苯乙酮和C21甾体皂苷[3-7]。泰山白首乌的主要药理活性有抗肿瘤、保肝、抗炎、抗菌、抗病毒、抗抑郁、降血糖 等[5-7]

    植物内生菌是一类广泛存在于宿主植物体内,且不引起宿主明显病症的真菌,是一类具有丰富多样性的微生物类群。植物内生菌通过“协同进化”作用,以促进宿主植物生长,增强抗逆性,促进药用植物中有效成分的积累[8-9],植物内生菌已成为国内外学者的研究热点。顾晓洁等[10] 2018年报道了滨海白首乌块根中内生细菌的分离鉴定。Li等[11]从滨海白首乌中分离出的一株产红色素具有抗氧化作用的内生真菌Stemphylium lycopersici。Gu等[12]从滨海白首乌中分离得到的内生真菌Plectosphaerella cucumerina YCTA2Z1中分离鉴定得到13种化合物,分离得到与宿主滨海白首乌相同的次级代谢产物单体告达庭(caudatin)、白首乌二苯酮、cynandione B和 2',5'-二羟基苯乙酮[11-12]。但是,目前没有关于泰山白首乌内生真菌的传统分离纯化培养报道。同时,有研究表明,泰山白首乌的粗提物和单体化合物对多种肿瘤细胞株均具有显著活性[6],目前已有从植物中分离得到具有抗肿瘤活性的内生真菌[13-14]的研究,但对泰山白首乌内生真菌的相关分离鉴定、活性成分及抗肿瘤等生物活性的研究还未开展。

    本实验以泰山白首乌内生真菌为研究对象,通过传统分离培养法,将分离鉴定得到的泰山白首乌内生真菌进行液体发酵,并进行抗肿瘤活性菌株筛选。一方面探讨泰山白首乌内生真菌能否产生与宿主相似的次级代谢产物,另一方面为研发新的抗肿瘤活性药物提供科学依据。

    • 3个产地的健康泰山白首乌植株各5株,包含根、茎、叶。济南的泰山白首乌叶(JTY)、泰山白首乌茎(JTJ)、泰山白首乌根(JTG),均采自山东中医药大学长清校区植物园内(36°56′ N, 116°79′ E);临沂的泰山白首乌叶(LTY)、泰山白首乌茎(LTJ)、泰山白首乌根(LTG),均采自临沂费县御华景宸农业生态园内(35°27′ N, 117°97′ E);泰安的泰山白首乌叶(TTY)、泰山白首乌茎(TTJ)、泰山白首乌根(TTG),均采自泰山(35°78′ N, 117°45′ E)。植物样品经山东中医药大学中药鉴定教研室徐凌川教授鉴定为泰山白首乌C. bungei Decne.。采集的样品用无菌塑料袋包装,置于4 ℃冰箱保存备用,48 h内进行样品处理。

    • T100™梯度PCR扩增仪(美国BIO-RAD伯乐T100梯度PCR仪);电泳仪(上海天能科技有限公司);凝胶成像仪(上海天能科技有限公司);Qubit® 2.0荧光计(赛默飞Invitrogen);SW-CJ-1D超净工作台(苏州净化设备有限公司);E.Z.N.A.真菌DNA提取试剂盒(美国Omega Bio-Tek);Taq DNA Polymerase(赛默飞Thermo);Agencourt AMPure XP(Beckman);2×Trans Taq High Fidelity (HiFi) PCR SuperMix I(北京全式金生物技术有限公司);ddH2O(北京全式金生物技术有限公司);琼脂糖(超纯)(北京天根生物科技有限公司);50×TAE缓冲液(北京索莱宝科技有限公司Solarbio);DNA Maker(日本TaKaRa);Goldview核酸染料(10 000×);6×Loading buffer(日本TaKaRa);XD-101 CO2细胞培养箱(日本SANYO公司);奥林巴斯IX51倒置荧光显微镜(日本奥林巴斯公司OLYMPUS);ELX800光吸收酶标仪(美国BioTek);细胞培养瓶(美国FALCON);青、链霉素混合液(北京索莱宝科技有限公司);PBS(北京索莱宝科技有限公司);RPMI-1640(美国GIBCO);DMEM(美国GIBCO);L15(美国GIBCO);FBS(美国ExCell Biology FBS500);MTT(美国Amresco);DMSO(溶解受试药品)(美国SIGMA D2650);土豆(沃尔玛);葡萄糖(源叶生物);琼脂粉(源叶生物);无水乙醇,分析纯(上海泰坦);次氯酸钠(分析纯,国药集团)。

    • 人肝癌细胞HEPG2、人胃癌细胞HGC27、人结肠癌细胞HT-29、人宫颈癌细胞HELA(中国科学院上海细胞库)。

    • 表面消毒:将采集新鲜济南、临沂和泰安产的戟叶牛皮消的根、茎和叶用自来水冲洗干净,转移至超净台,进行“75%乙醇-2.5%次氯酸钠-75%乙醇”的3步表面消毒处理。处理过后继续用无菌水冲洗5遍,灭菌滤纸将表面水分吸干。

      组织块培养:超净台中操作,用消毒的剪刀和镊子分别将根、茎与叶剪切成小的组织块(0.5 cm×0.5 cm),分别从3个部位中各随机挑取20个组织块,每组设置4~5个组织块,分组好的组织块置于含有青霉素(50 mg/L)马铃薯葡萄糖琼脂培养基(PDA)的平板中,于温度25 ℃,湿度80%的恒温恒湿培养箱中进行内生真菌菌丝的生长情况的定期观察。挑取尖端菌丝转移到新的PDA培养基中培养,至菌丝形态单一,即得到纯化的菌株[15-16]。根据内生真菌菌株的培养的形态特征初步划分为不同的形态型,拍照留存。根据菌株群落的培养特征,划分为不同的形态型,继续将分离纯化后的菌株接种至PDA固体试管斜面培养基上进行培养,4 ℃冰箱保存。

    • 观察培养的内生真菌菌落形态,对照《真菌鉴定手册》进行形态学特征鉴定。将“2.1.1”项下形态一致的泰山白首乌内生真菌菌株进行合并[16],参考E.Z.N.A.真菌DNA提取试剂盒说明书提取菌株DNA。以提取的DNA为模板,采用真菌ITS通用引物TIS4(5’-TCC TCC GCT TTA TTG ATA TGC-3’)和ITS5(5’-GGA AGT AAA GTC GTA ACA AGG-3’)对菌株的r DNA-ITS区域进行PCR扩增。PCR反应体系:2×Trans Taq Fidelity(HiFi) PCR SuperMix 15 μl,Primer(10 μmol/L)各1 μl,Genomic DNA 10 ng;补充双蒸水至 30 μl。反应条件:94 ℃预变性3 min,94 ℃变性40 s,52 ℃退火50 s,72 ℃延伸1 min,35个循环,72 ℃延伸10 min。5 μl PCR产物用2%琼脂糖凝胶电泳检测。将合格的PCR扩增产物送上海生工生物有限公司进行测序。内生真菌菌株测序得到的ITS序列去除载体序列,利用NCBI数据库(http://www.ncbi.nlm. nih.gov)BLAST进行比对,根据所得分子鉴定结果并结合形态学特征确定菌株。

    • 按“2.1”项下方法分离得到的90个形态型泰山白首乌内生真菌菌株为供试菌株,PDA固体培养基中接种活化。待菌丝覆盖培养基表面时,用直径5 mm打孔器制备10个菌饼,放入装有100 ml的PDA培养基的锥形瓶中,每个菌种接种6瓶。接种后于25 °C、180 r/min 振荡培养7 d。发酵完成后,抽滤并收集发酵培养液,1∶1乙酸乙酯萃取3次,合并有机相,减压浓缩,即得乙酸乙酯提取物[17]。干燥后于4 °C冰箱中避光保存。

    • 二甲基亚砜(DMSO)溶解乙酸乙酯粗提物后,用PBS分别稀释至0.001、0.01、0.1、1.0、10.0、100.0 μg/ml。采用MTT法测定样品抗肿瘤活性[17]。以人肝癌细胞HEPG2,人胃癌细胞HGC27,人结肠癌细胞HT-29,人宫颈癌细胞HELA为受试对象,阳性对照采用阿霉素。将细胞放置于含10% FBS、青霉素和链霉素各100 U/ml的DMEM细胞培养液中,于37 ℃、5% CO2饱和湿度的细胞培养箱中培养,48 h换液传代。消化传代后显微镜下观察细胞的生长情况。取对数生长期的细胞,胰酶消化后,10%小牛血清的完全培养液洗涤、悬浮,将100 μl悬浮细胞液(2~4×104个/ml)接种于96孔板中,培养24 h。吸弃培养液,每孔加入100 μl含有不同药物的完全培养基(含10%小牛血清,1%双抗),每种浓度设3个平行孔,设空白对照组,培养72 h后,每个孔加入5 mg/ml的 MTT 10 μl,培养4 h,吸弃培养液后加入100 μl DMSO,振荡至结晶完全溶解,用酶联免疫监测仪在波长为570 nm处测定A值,计算各浓度下的细胞抑制率,计算方法如下:

      $$ \text{细胞抑制率}=1-\frac{\text{药敏孔相对}A\text{值}}{\text{阴性对照孔相对}A \text{值}} $$

      阴性对照孔相对A值=阴性对照孔绝对A值—空白对照孔绝对A

      药敏孔相对A值=药敏孔绝对A值—空白对照孔绝对A

      本研究采用SPSS 17.0通过机率单位加权回归法(Bliss法)计算IC50

    • 将分离到的869株内生真菌,根据培养特征划分为90个形态型,对不同形态型菌株ITS基因与GenBank中的参考序列进行分子系统学分析,结果见表1,有结果可知,鉴定得到的内生真菌属于3门、12纲、14目、14科、18属和30种。

      表 1  根据BLAST序列分离得到的泰山白首乌内生真菌

      属名基因库中接近种(登录号)相似度 (%)组织部位菌株数
      链格孢属A. alternata (MH368103.1)99 1 2 3
      A. alternata (MH716004.1)99 4 4
      A. alternata (MG669159.1)99 1 1
      A. alternata(MK07593.1)99 1 1
      A. alternata (MK392122.1)99 1 1
      A. alternata(MK659949.1)99 2 2
      A. alternata(KY859403.1)99 2 2
      A.alternata (KJ739880.1)99 2 2 1 5
      A. alternata (KY859403.1)99 1 1
      A. alternata (LN835252.1)991 1 2
      A. alternata (EF504974.1)78 1 1
      A. arborescens (MK460794.1)99 1 1
      A. brassicicola(MF167294.1)99 1 1 2
      A. burnsii(KR604840.1)100 1 1
      Alternaria sp.(KC139509.1)99 1 1
      Alternaria sp.(KC110624.1)99 1 1
      Alternaria sp.(KC147581.1)99 2 2
      Alternaria sp.(KU556507.1)99 1 1
      A.tenuissima(MG602685.1)99 3 3 6
      A. tenuissima (MK675103.1)99 2 2
      子囊菌属Ascomycota sp.(FJ999646.1)99 1 1
      曲霉菌属A. terreus var.floccosus (KP987086.1)99 1 1
      小檗属B. fortunei (MK850215.1) 1 1
      葡萄座腔菌属B. dothidea(HM156069.1) 1 1
      B. dothidea(KF294012.1)11
      双极霉属B. sorokiniana (HF934936.1) 1 1
      B. micropus(LT837454.1)82 1 1
      生赤壳属B. ochroleuca(EU273558.1) 1 1
      棒孢属C.cassiiola (MH569606.1) 1 1
      炭疽菌属C. acutatum(MG661733.1) 1 1
      C. capsici (EF016299.1) 1 1
      C. gloeosporioides (KM044004.1) 1 1
      C. nymphaeae (MH863840.1) 1 1
      间座壳属D. phaseolorum (MF379339.1) 1 1
      D. phaseolorum (KX866874.1) 1 1
      EmmiaE. lacerate(MF101401.1) 1 1
      突脐蠕孢属E. rostratum (MH746929.1) 1 1 2
      E. rostratum (MH746928.1) 1 1
      镰刀菌属F. nematophilum (KF577906.1) 2 2
      F. nematophilum (KX621959.1) 1 1
      F. oxysporum(MK673882.1) 1 1
      F. oxysporum (KM005080.1) 1 1
      F. oxysporum (KY910845.1) 1 1
      F. oxysporum(GU724513.1) 1 1
      F. solani f. batatas (AF178407.1) 6 7
      F. solani batatas (EU625405.1) 1 1
      F. solani batatas (MK571197.1) 1 1
      F. solani f. batatas (KM235740.1) 1 1
      F. solani f. batatas (KJ676962.1)98 1 1
      F. solani f. batatas (KU382502.1)98 2 2
      Fusarium sp.(FJ008989.1) 1 1
      Fusarium sp. (MH884151.1) 1 1
      小丛壳属G. cingulata (EF423544.1) 2 2
      球座菌属G. mangiferae(EU677803.1) 1 1
      孢菌属Pleosporaceae sp. (HQ832799.1) 1 1
      腔菌属Pleosporales sp. (APBSDSF25) 1 1
      P. cablin(MK568502.1)98 1 1
      毛球腔菌属Setosphaeria sp. (LT837842.1)92 1 1
      踝节菌属T. purpureogenus (KU981069.1) 1 1
      炭角菌属Xylariaceae sp. (MG669156.1) 1 1
      28303290
    • 组织因素在影响内生真菌的多样性和分布规律发挥着重要的作用[18],在属的水平上,其对泰山白首乌内生真菌的组成影响也较为显著,如图1所示。泰山白首乌根部内生真菌主要分布于8个属,其中,优势菌属为镰刀菌属Fusarium,占根中内生真菌的64.29%;泰山白首乌茎部内生真菌分布于9个属,优势菌属为链格孢属Alternaria,占茎中内生真菌的60%;泰山白首乌叶部内生真菌分布13个属,优势菌属为链格孢属Alternaria,占叶中内生真菌的56.25%;泰山白首乌内生真菌的叶丰度大于茎和根。3个不同的组织部位中,链格孢属Alternaria和炭疽菌属Colletotrichum为三者共有属,其他具有差异。结果表明,在不同组织部位中,泰山白首乌的内生真菌的分布差异显著。

      图  1  泰山白首乌不同部位中内生真菌组成及占百分比(%,属)

    • 地理位置会影响内生真菌的多样性[19]。在90个形态型内生真菌菌株中,产地济南的泰山白首乌分离39个菌株,产地泰安分离得到26个菌株,产地临沂分离得到25个。如图2结果所示,3个产地的泰山白首乌优势菌属为链格孢属Alternaria和镰刀菌属Fusarium,产地济南的泰山白首乌内生真菌主要分布在12个属,优势菌属链格孢属占38.46%,镰刀菌属占28.21%;产地泰安的泰山白首乌内生真菌主要分布在5个属,优势菌属链格孢属占61.54%,镰刀菌属占26.92%;产地临沂的泰山白首乌内生真菌主要分布在11个属,优势菌属链格孢属占48.00%,镰刀菌属占32.00%。由此可知,产地对泰山白首乌内生真菌的群落组成和优势菌群均有影响,群落组成影响较大。

      图  2  不同产地泰山白首乌内生真菌组成及所占百分比(%)

    • MTT结果表明,有13株内生真菌菌株代谢产物对HEPG2、HGC27、HT-29、HeLa肿瘤细胞株表现抗肿瘤活性,占总数的14.4%。如表2所示,B. sorokinianaJTY6、A. alternate JTY10、A. brassicicola JTJ11、B. ochroleuca JTJ18、Xylariaceae sp. LTJ1、A. tenuissima LTJ2、C. acutatum LTJ3和A. alternata LTJ6抗肿瘤活性较明显。链格孢属Alternaria是泰山白首乌内生真菌中筛选出抗肿瘤活性菌株的优势菌属,其中,A. tenuissima LTJ2和A. alternata LTJ6的抗肿瘤活性尤其显著,能够显著抑制HEPG2、HGC27、HT-29和HeLa肿瘤细胞株。A. tenuissima LTJ2对HEPG2、HGC27、HT-29、HeLa 4种肿瘤细胞株的 IC50值分别为(2.21±0.61)、(3.11±0.46)、(8.25±1.11)、(3.85±0.60) μg /ml;A. alternata LTJ6为(1.58±0.38)、(1.46±0.39)、(3.63±1.23)、(6.24±0.49) μg /ml。以上结果表明,A. tenuissima LTJ2和A. alternata LTJ6是泰山白首乌具有显著抗肿瘤活性的内生真菌株,可以进一步研究其产生抗肿瘤活性的单体成分。

      表 2  泰山白首乌内生菌菌株的抗肿瘤活性

      菌株抗肿瘤活性 (IC50, μg/ml)
      HGC27HEPG2HT-29HELA
      JTY66.34±1.1011.05±1.1529.84±5.78>40
      JTY107.87±1.096.53±0.2818.57±5.15>40
      JTJ119.92±1.136.59±0.565.94±0.8821.37±5.99
      JTJ182.61±0.353.20±0.423.55±0.309.96±2.38
      LTJ11.69±0.322.96±0.2413.23±1.667.41±1.47
      LTJ22.21±0.613.11±0.468.25±1.113.85±0.60
      LTJ35.34±0.895.10±1.2113.01±1.635.87±1.36
      LTJ61.58±0.381.46±0.393.63±1.236.24±0.49
      JTJ1321.76±0.68>4020.07±1.38>40
      LTJ521.43±0.3533.43±1.31>40>40
      LTJ1021.34±0.6529.81±0.32>40>40
      TTY727.89±1.0838.53±0.28>40>40
      TTY1818.25±0.24>40>4031.41±1.49
      阿霉素0.022±0.0030.034±0.010.030±0.0030.039±0.006
    • 泰山白首乌与“泰山黄精”、“泰山紫草”和“泰山四叶参”并称为泰山四大名药[2],但因其自然繁殖率低等因素,导致资源匮乏,市场上供不应求。植物内生真菌与宿主长期协同进化,可以产生相同或相似的活性代谢产物[9],通过对泰山白首乌内生真菌的深入研究将有效的缓解其资源匮乏,而内生真菌有可能成为开发泰山白首乌的新资源。

      本研究表明泰山白首乌中内生真菌资源丰富,具有较丰富的多样性,泰山白首乌内生真菌的分布在不同组织部位差异显著,以丰度比较叶大于茎和根,具有明显的组织特异性,产地对泰山白首乌的优势菌群和群落组成有影响。除优势属、种外,分离得到的大豆疫霉、炭角菌和淡色赤壳菌等内生真菌菌株,也具有良好生物活性 [20-22]

      植物内生真菌能产生与宿主相同或相似的活性成分及生物活性,本研究首次报道了筛选得到的13株泰山白首乌内生真菌具有抗肿瘤活性,占总数的14.4%,其中,从叶中筛选到4株抗肿瘤活性菌株,茎中筛选得到9株抗肿瘤活性菌株,根中无,同时,A. tenuissima LTJ2和A. alternata LTJ6两种抗肿瘤活性尤其显著,值得深入研究。然而,泰山白首乌的药用部位为块根,由于内生真菌在植物组织中的定殖不同,导致在不同组织部位的分布存在差异,具体原因还需要进一步深入研究。另外,从产地上来看,不同产地所筛选得到的抗肿瘤活性菌株数量及品种不同,济南产泰山白首乌筛选到5株抗肿瘤活性菌株,临沂产泰山白首乌筛选到6株活性菌株,泰安产泰山白首乌筛选到2株活性菌株,综上,泰山白首乌中内生真菌的种群结构的抗肿瘤活性是否存在与产地相关,需要进一步深入研究,而已经分离得到的活性菌株的次生代谢产物及其作用机制的研究也是下一个重要目标。

参考文献 (22)

目录

/

返回文章
返回