-
表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)作为一种高效、快速、灵敏的分析手段,受到各个领域的广泛关注[1-2]。SERS技术在原有拉曼光谱的基础上将被测物质的信号提高了106~1014倍[3],并且,通过SERS技术可以获取被测物质详细的指纹图谱,是鉴别、检测结构类似物最有效的分析手段之一[4-5]。但是,利用单一的SERS技术对混合体系中的目标物进行检测是十分困难的。而通过联用其他分析手段可有效的弥补单一SERS技术检测的不足,提高SERS技术的检测能力和表征能力。本文将可以与SERS联用的技术方法进行系统地分类,并对联用的机理和优势进行阐述。
Overview of surface-enhanced Raman spectroscopy in combination with other detection techniques
-
摘要: 表面增强拉曼光谱(SERS)作为日渐成熟的分析检测技术,对自然界中许多单一物质具有鉴别检测,甚至是定量测定的能力。但在实际样品分析中,被测样品往往是多种物质的混合体系,单纯依靠SERS技术无法实现对混合体系各组成成分的准确表征。因此,SERS联用其他技术手段来对被测物质进行准确测定已成为必然趋势。通过联用的方式,提高SERS在检测和表征方面的不足,实现高效、灵敏、准确地测定被测物质的目的。
-
关键词:
- 表面增强拉曼散射光谱 /
- 联用 /
- 分析测定
Abstract: As an increasingly mature analytical technique, surface-enhanced Raman spectroscopy has the ability to identify, detect, and even quantitatively measure many single substances in nature. However, in the actual sample analysis, the tested samples were often a mixed system of various substances, and it was impossible to accurately characterize the components of the mixed system only by relying on SERS technology. Therefore, SERS combined with other techniques to accurately determine the measured substances has become an inevitable trend. Through the combination, the deficiency of SERS in detection and characterization was improved, and the purpose of efficient, sensitive and accurate determination of substances to be measured was achieved.-
Key words:
- surface-enhanced Raman spectroscopy /
- combination /
- determination
-
[1] GARCIA-RICO E, ALVAREZ-PUEBLA R A, GUERRINI L. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications[J]. Chem Soc Rev,2018,47(13):4909-4923. doi: 10.1039/C7CS00809K [2] PILOT R, SIGNORINI R, DURANTE C, et al. A review on surface-enhanced Raman scattering[J]. Biosensors,2019,9(2):57. doi: 10.3390/bios9020057 [3] ZONG C, XU M X, XU L J, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chem Rev,2018,118(10):4946-4980. doi: 10.1021/acs.chemrev.7b00668 [4] WU M R, LI H, LV D Y, et al. Dynamic-SERS spectroscopy for the in situ discrimination of xanthine analogues in ternary mixture[J]. Anal Bioanal Chem,2017,409(23):5569-5579. doi: 10.1007/s00216-017-0495-3 [5] ZHU Q X, CAO Y B, CAO Y Y, et al. Rapid on-site TLC-SERS detection of four antidiabetes drugs used as adulterants in botanical dietary supplements[J]. Anal Bioanal Chem,2014,406(7):1877-1884. doi: 10.1007/s00216-013-7605-7 [6] SMITH R, WRIGHT K L, ASHTON L. Raman spectroscopy: an evolving technique for live cell studies[J]. Analyst,2016,141(12):3590-3600. doi: 10.1039/C6AN00152A [7] BUTLER H J, ASHTON L, BIRD B, et al. Using Raman spectroscopy to characterize biological materials[J]. Nat Protoc,2016,11(4):664-687. doi: 10.1038/nprot.2016.036 [8] ZHANG Y, ZHAO S J, ZHENG J K, et al. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization[J]. Trac Trends Anal Chem,2017,90:1-13. doi: 10.1016/j.trac.2017.02.006 [9] NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science,1997,275(5303):1102-1106. doi: 10.1126/science.275.5303.1102 [10] XIE X H, PU H B, SUN D W. Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis[J]. Crit Rev Food Sci Nutr,2018,58(16):2800-2813. doi: 10.1080/10408398.2017.1341866 [11] LI P, HE H, LIN D Y, et al. Highly sensitive detection of an antidiabetic drug as illegal additives in health products using solvent microextraction combined with surface-enhanced Raman spectroscopy[J]. Analyst,2019,144(24):7406-7411. doi: 10.1039/C9AN01688K [12] ZHANG D, LIANG P, YE J M, et al. Detection of systemic pesticide residues in tea products at trace level based on SERS and verified by GC-MS[J]. Anal Bioanal Chem,2019,411(27):7187-7196. doi: 10.1007/s00216-019-02103-7 [13] SONG D, YANG R, LONG F, et al. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants[J]. J Environ Sci (China),2019,80:14-34. doi: 10.1016/j.jes.2018.07.004 [14] BARHOUMI A, ZHANG D M, TAM F, et al. Surface-enhanced Raman spectroscopy of DNA[J]. J Am Chem Soc,2008,130(16):5523-5529. doi: 10.1021/ja800023j [15] MA H, TANG X F, LIU Y W, et al. Surface-enhanced Raman scattering for direct protein function investigation: controlled immobilization and orientation[J]. Anal Chem,2019,91(14):8767-8771. doi: 10.1021/acs.analchem.9b01956 [16] GAO W C, LI B, YAO R Z, et al. Intuitive label-free SERS detection of bacteria using aptamer-based in situ silver nanoparticles synthesis[J]. Anal Chem,2017,89(18):9836-9842. doi: 10.1021/acs.analchem.7b01813 [17] HE X N, WANG Y N, WANG Y, et al. Accurate quantitative detection of cell surface sialic acids with a background-free SERS probe[J]. Talanta,2020,209:120579. doi: 10.1016/j.talanta.2019.120579 [18] BROSSEAU C L, GAMBARDELLA A, CASADIO F, et al. Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis[J]. Anal Chem,2009,81(8):3056-3062. doi: 10.1021/ac802761v [19] LIAO W, LU X N. Determination of chemical hazards in foods using surface-enhanced Raman spectroscopy coupled with advanced separation techniques[J]. Trends Food Sci Technol,2016,54:103-113. doi: 10.1016/j.jpgs.2016.05.020 [20] ANSARI S A, MOHAPATRA P K. A review on solid phase extraction of actinides and lanthanides with amide based extractants[J]. J Chromatogr A,2017,1499:1-20. doi: 10.1016/j.chroma.2017.03.035 [21] YU S H, LIU Z G, LI H W, et al. Combination of a graphene SERS substrate and magnetic solid phase micro-extraction used for the rapid detection of trace illegal additives[J]. Analyst,2018,143(4):883-890. doi: 10.1039/C7AN01547J [22] WANG J, RIOS A, LISOVA K, et al. High-throughput radio-TLC analysis[J]. Nucl Med Biol,2020,82-83:41-48. doi: 10.1016/j.nucmedbio.2019.12.003 [23] HEMDAN ABOU-TALEB N, MAHMOUD EL-ENANY N, TAWFIK EL-SHERBINY D, et al. Digitally enhanced thin layer chromatography for simultaneous determination of norfloxacin and tinidazole with the aid of Taguchi orthogonal array and desirability function approach: Greenness assessment by analytical Eco-Scale[J]. J Sep Sci,2020,43(6):1195-1202. doi: 10.1002/jssc.201900997 [24] CIURA K, DZIOMBA S, NOWAKOWSKA J, et al. Thin layer chromatography in drug discovery process[J]. J Chromatogr A,2017,1520:9-22. doi: 10.1016/j.chroma.2017.09.015 [25] CHEN J, ABELL J, HUANG Y W, et al. On-chip ultra-thin layer chromatography and surface enhanced Raman spectrosco-py[J]. Lab Chip,2012,12(17):3096-3102. doi: 10.1039/c2lc40221a [26] HERMAN K, MIRCESCU N E, SZABO L, et al. In situ silver spot preparation and on-plate surface-enhanced Raman scattering detection in thin layer chromatography separation[J]. J Appl Spectrosc,2013,80(2):311-314. doi: 10.1007/s10812-013-9765-9 [27] TAN A L, ZHAO Y, SIVASHANMUGAN K, et al. Quantitative TLC-SERS detection of histamine in seafood with support vector machine analysis[J]. Food Control,2019,103:111-118. doi: 10.1016/j.foodcont.2019.03.032 [28] GEIMAN I, LEONA M, LOMBARDI J R. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks[J]. J Forensic Sci,2009,54(4):947-952. doi: 10.1111/j.1556-4029.2009.01058.x [29] MARGHANY K A, ABDELSALAM R A, HADDAD G M. HPLC method transfer study for simultaneous determination of seven angiotensin II receptor blockers[J]. J Sep Sci,2020,43(8):1398-1405. doi: 10.1002/jssc.201900534 [30] NARUKAWA T, IWAI T, CHIBA K. Simultaneous speciation analysis of inorganic arsenic and methylmercury in edible oil by high-performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Talanta,2020,210:120646. doi: 10.1016/j.talanta.2019.120646 [31] SHENG R S, NI F, COTTON T M. Determination of purine bases by reversed-phase high-performance liquid chromatography using real-time surface-enhanced Raman spectroscopy[J]. Anal Chem,1991,63(5):437-442. doi: 10.1021/ac00005a010 [32] WANG W, XU M M, GUO Q H, et al. Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy[J]. RSC Adv,2015,5(59):47640-47646. doi: 10.1039/C5RA05562H [33] GAO Y L, HUANG X X, ZHU Y B, et al. A brief review of monoclonal antibody technology and its representative applications in immunoassays[J]. J Immunoassay Immunochem,2018,39(4):351-364. doi: 10.1080/15321819.2018.1515775 [34] LIU J, YU Q Q, ZHAO G Y, et al. A novel immunochromatographic assay using ultramarine blue particles as visible label for quantitative detection of hepatitis B virus surface antigen[J]. Anal Chim Acta,2020,1098:140-147. doi: 10.1016/j.aca.2019.11.037 [35] CHO I H, BHANDARI P, PATEL P, et al. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157: H7 in ground beef[J]. Biosens Bioelectron,2015,64:171-176. doi: 10.1016/j.bios.2014.08.063 [36] GUARROTXENA N, LIU B, FABRIS L, et al. Antitags: nanostructured tools for developing SERS-based ELISA analogs[J]. Adv Mater,2010,22(44):4954-4958. doi: 10.1002/adma.201002369 [37] PEKDEMIR M E, ERTÜRKAN D, KÜLAH H, et al. Ultrasensitive and selective homogeneous sandwich immunoassay detection by Surface Enhanced Raman Scattering (SERS)[J]. Analyst,2012,137(20):4834-4840. doi: 10.1039/c2an35471c [38] LI M, BANERJEE S R, ZHENG C, et al. Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer[J]. Chem Sci,2016,7(11):6779-6785. doi: 10.1039/C6SC01739H [39] CHÁVEZ J L, LYON W, KELLEY-LOUGHNANE N, et al. Theophylline detection using an aptamer and DNA-gold nanoparticle conjugates[J]. Biosens Bioelectron,2010,26(1):23-28. doi: 10.1016/j.bios.2010.04.049 [40] WANG G Q, WANG Y Q, CHEN L X, et al. Nanomaterial-assisted aptamers for optical sensing[J]. Biosens Bioelectron,2010,25(8):1859-1868. doi: 10.1016/j.bios.2009.11.012 [41] LUO L H, ZHANG F, CHEN C Y, et al. Molecular imprinting resonance light scattering nanoprobes based on pH-responsive metal-organic framework for determination of hepatitis A virus[J]. Mikrochim Acta,2020,187(2):140. doi: 10.1007/s00604-020-4122-1 [42] SAYLAN Y, YILMAZ F, ÖZGÜR E, et al. Molecular imprinting of macromolecules for sensor applications[J]. Sensors (Basel),2017,17(4):E898. doi: 10.3390/s17040898 [43] YıLMAZ E, GARIPCAN B, PATRA H K, et al. Molecular imprinting applications in forensic science[J]. Sensors (Basel),2017,17(4):E691. doi: 10.3390/s17040691 [44] CHEN S N, DONG L J, YAN M, et al. Rapid and sensitive biomarker detection using molecular imprinting polymer hydrogel and surface-enhanced Raman scattering[J]. R Soc Open Sci,2018,5(1):171488. doi: 10.1098/rsos.171488 [45] GAO F, GRANT E, LU X N. Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy[J]. Anal Chim Acta,2015,901:68-75. doi: 10.1016/j.aca.2015.10.025 [46] KAMRA T, XU C G, MONTELIUS L, et al. Photoconjugation of molecularly imprinted polymer nanoparticles for surface-enhanced Raman detection of propranolol[J]. ACS Appl Mater Interfaces,2015,7(49):27479-27485. doi: 10.1021/acsami.5b09500 [47] BOYD-MOSS M, BARATCHI S, DI VENERE M, et al. Self-contained microfluidic systems: a review[J]. Lab Chip,2016,16(17):3177-3192. doi: 10.1039/C6LC00712K [48] CHO Y, LEE S A, CHEW Y L, et al. Multimodal stimulation in a microfluidic device facilitates studies of interneurons in sensory integration in C. elegans[J]. Small,2020,16(10):e1905852. doi: 10.1002/smll.201905852 [49] HIDI I J, JAHN M, WEBER K, et al. Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection[J]. Phys Chem Chem Phys,2015,17(33):21236-21242. doi: 10.1039/C4CP04970E [50] WU L, WANG Z Y, ZONG S F, et al. Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip[J]. Biosens Bioelectron,2014,62:13-18. doi: 10.1016/j.bios.2014.06.026 [51] NIE B, MASYUKO R N, BOHN P W. Correlation of surface-enhanced Raman spectroscopy and laser desorption-ionization mass spectrometry acquired from silver nanoparticle substrates[J]. Analyst,2012,137(6):1421-1427. doi: 10.1039/c2an15790j [52] CYRIAC J, LI G T, COOKS R G. Vibrational spectroscopy and mass spectrometry for characterization of soft landed polyatomic molecules[J]. Anal Chem,2011,83(13):5114-5121. doi: 10.1021/ac200118f [53] LUDWIG M, HIMMEL D, HILLEBRECHT H. GIAO versus GIPAW: comparison of methods to calculate 11B NMR shifts of icosahedral Closo-heteroboranes toward boron-rich borides[J]. J Phys Chem A,2020,124(11):2173-2185. doi: 10.1021/acs.jpca.9b06582 [54] FANG C, XIE Y J, JOHNSTON M R, et al. SERS and NMR studies of typical aggregation-induced emission molecules[J]. J Phys Chem A,2015,119(29):8049-8054. doi: 10.1021/acs.jpca.5b05478 [55] MUHAMADALI H, SUBAIHI A, MOHAMMADTAHERI M, et al. Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting[J]. Analyst,2016,141(17):5127-5136. doi: 10.1039/C6AN00883F [56] XIE Y F, LI P, ZHANG J, et al. Comparative studies by IR, Raman, and surface-enhanced Raman spectroscopy of azodicarbonamide, biurea and semicarbazide hydrochloride[J]. Spectrochim Acta A Mol Biomol Spectrosc,2013,114:80-84. doi: 10.1016/j.saa.2013.05.055 [57] SHI Y, CAI M J, ZHOU L L, et al. Measurement of mechanical properties of naked cell membranes using atomic force microscope puncture test[J]. Talanta,2020,210:120637. doi: 10.1016/j.talanta.2019.120637 [58] BONDŽIĆ A M, LESKOVAC A R, PETROVIĆ S Ž, et al. Conjugates of gold nanoparticles and antitumor gold(III) complexes as a tool for their AFM and SERS detection in biological tissue[J]. Int J Mol Sci,2019,20(24):E6306. doi: 10.3390/ijms20246306