留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

CRELD2在小鼠组织中的表达水平研究

常富强 王淑娜 汪东昇 缪朝玉

尤本明, 王忠壮. 新冠肺炎患者救治及康复中的中药治疗思考[J]. 药学实践与服务, 2020, 38(2): 101-104. doi: 10.3969/j.issn.1006-0111.202003061
引用本文: 常富强, 王淑娜, 汪东昇, 缪朝玉. CRELD2在小鼠组织中的表达水平研究[J]. 药学实践与服务, 2022, 40(2): 125-131. doi: 10.12206/j.issn.1006-0111.202111038
YOU Benming, WANG Zhongzhuang. Traditional Chinese medicine in the treatment and rehabilitation for Coronavirus Disease 2019[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(2): 101-104. doi: 10.3969/j.issn.1006-0111.202003061
Citation: CHANG Fuqiang, WANG Shuna, WANG Dongsheng, MIAO Chaoyu. Expression of CRELD2 in mouse tissues[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(2): 125-131. doi: 10.12206/j.issn.1006-0111.202111038

CRELD2在小鼠组织中的表达水平研究

doi: 10.12206/j.issn.1006-0111.202111038
基金项目: 国家自然科学基金重点项目(No 82030110); 上海市2021年度“科技创新行动计划”实验动物研究领域项目(No 21140901000)
详细信息
    作者简介:

    常富强,硕士研究生,Email:18301995262@163.com

    通讯作者: 缪朝玉,教授,博士生导师,研究方向:心脑血管药理学,Email:cymiao@smmu.edu.cn
  • 中图分类号: R965

Expression of CRELD2 in mouse tissues

  • 摘要:   目的  通过不同方法在基因及蛋白质水平探究CRELD2在小鼠各组织中的表达水平,为研究CRELD2在各组织中的生物学功能提供依据。  方法  通过实时荧光定量聚合酶链式反应(RT-PCR)及蛋白质印迹法(Western Blot,WB)测定C57BL/6J小鼠的肝、胰腺、胃、肺等组织中CRELD2 mRNA与CRELD2蛋白的含量,实现在不同水平上探究CRELD2在各组织中的表达情况。  结果  RT-PCR及WB测定结果显示,CRELD2在小鼠的肝、胰腺、胃、肺组织中均有表达,表达量在各组织间存在差异;基因水平的相对表达量排序为:胰腺>胃>肝>肺;蛋白水平的相对表达量排序为:胰腺>肝>胃>肺。检测结果表明CRELD2在各组织中普遍存在,但组织间相对表达量的排序并不完全一致,推测与转录调控相关。  结论  CRELD2在小鼠的肝、胰腺、胃、肺组织中均有表达,且相对表达量在基因与蛋白质水平不完全平行。
  • 2020年初,新型冠状病毒(Severe Acute Respiratory Syndrome Coronavirus 2,SARS-CoV-2)感染的肺炎(Corona Virus Disease 2019,COVID-19)在湖北武汉爆发,所致疫情的控制和患者的救治已经持续了两个多月,从疫情爆发之初的混乱,到各地医疗队援汉抢救重症患者,方舱建设后对轻症患者的有效隔离,救治工作逐渐有序进行,而后期病理解剖的加入,更是给临床救治以巨大助力。目前,救治轻症患者的方舱医院陆续被休舱,抗疫重心转向重症及危重症患者。基于国家医保政策及笔者的中药学专业实践,探讨活血化瘀类和虫草菌发酵制剂两类中药在COVID-19患者救治及康复中的作用,以期为国内外同类患者的救治提供支持。

    以发热、干咳、乏力为主,少数患者有咽痛、腹泻。病毒攻击、细胞因子风暴和缺氧导致重症患者出现呼吸困难和/或低氧血症,部分患者病情急剧恶化,快速出现急性呼吸窘迫综合征、难以纠正的代谢性酸中毒、脓毒症休克和出凝血功能障碍及多器官功能衰竭等而死亡。

    随着病理分析渠道的逐步拓展,华中科技大学刘良等人实施遗体解剖、临床穿刺组织活检,还有深圳市第三人民医院、无锡市人民医院的活检肺移植手术的危重症新冠肺炎患者的全肺,都揭示出肺及肺外的病变,以下简单列出与此文后续讨论相关的肺部和肾脏的病理改变。

    1.2.1   肺脏

    呈不同程度实变。少数肺泡过度充气、肺泡隔断裂或囊腔形成。肺泡腔内见浆液、纤维蛋白性渗出物(部分出现机化)及透明膜形成;Ⅱ型肺泡上皮细胞显著增生,部分细胞脱落。肺泡隔血管充血、水肿,可见单核和淋巴细胞浸润及血管内透明血栓形成。肺组织灶性出血、坏死,可出现出血性梗死。肺间质纤维化。肺内支气管黏膜部分上皮脱落,腔内可见黏液及黏液栓形成。

    1.2.2   肾脏

    肾小球球嚢腔内见蛋白性渗出物,肾小管上皮变性、脱落,可见透明管型。间质充血,可见微血栓和灶性纤维化。

    细胞因子是由免疫细胞(单核/巨噬细胞、T细胞、B细胞、NK细胞等)和某些非免疫细胞(内皮细胞、表皮细胞、纤维母细胞等)经刺激合成、分泌的一类具有广泛生物学活性的小分子蛋白质,能调节固有免疫和适应性免疫应答,适宜水平的细胞因子可抑制病毒复制和传播,但过高水平的细胞因子会加剧细胞、组织和器官的损伤。

    临床观察发现,相对于轻症患者,重症监护COVID-19患者血浆中存在更高水平的炎性细胞因子,如白细胞介素IL-1β、IL-6、IL-17及TNF-α;COVID-19患者外周血白细胞计数和淋巴细胞比例下降,CD4+及CD8+T细胞计数显著下降,但活化细胞比例明显上升,这些免疫细胞也可能参与了机体的炎症反应。SARS-CoV-2感染人体后,迅速激活炎症性T细胞和炎症性单核巨噬细胞,通过粒细胞-巨噬细胞集落刺激因子、IL-6等炎性细胞因子,形成炎症风暴,导致严重肺部免疫损伤,并累及免疫系统、循环系统、心脏、肝脏、肾脏、小肠等。

    西医立足抗病毒和针对肺炎临床症状进行对症或支持治疗,中医基于辨证抗瘟疫,各有特色。

    通常采取抗病毒治疗[使用α干扰素、洛匹那韦/利托那韦、利巴韦林、磷酸氯喹(上海使用羟氯喹)、阿比多尔等]、对症治疗、新康复者血清治疗、免疫治疗(利用免疫抑制剂托珠单抗针对IL-6升高者,还可使用糖皮质激素甲泼尼龙)和其他治疗措施(血必净和肠道微生态制剂),如呼吸支持、循环支持、肾功能衰竭和肾功能替代治疗、血液净化治疗(针对细胞因子风暴)等。

    采用辛温解表之法温散、透寒邪,通过芳香避秽化浊治疗湿邪,同时调理脾胃来针对寒湿疫。根据患者的体质、病情、当地气候特点等,辨证施治。

    对医学观察期临床表现为“乏力伴胃肠不适”者,给予藿香正气制剂;“乏力伴发热”者服用金花清感颗粒、连花清瘟制剂、疏风解毒制剂、防风通圣丸。

    临床治疗期各型都可使用清肺排毒汤。轻型分为寒湿郁肺证、湿热蕴肺证,各推荐一个处方;普通型分为湿毒郁肺证、寒湿阻肺证,也各推荐一个处方;重型分为疫毒闭肺证、气营两燔证,亦各推荐一个处方,还推荐了中药注射液喜炎平、血必净、热毒宁、痰热清、醒脑静,可联合汤剂使用;危重型,内闭外脱证推荐人参、黑顺片、山茱萸煎液送服苏合香丸或安宫牛黄丸,并推荐了中药注射液血必净、热毒宁、痰热清、醒脑静、参附、参麦、生脉等,可与汤剂联用。

    恢复期分为肺脾气虚证和气阴两虚症,各推荐一个处方。

    本次抗疫战争中,中医药参与救治取得了很好的效果,得到党中央、中纪委、国家卫健委、国家中医药管理局的肯定,并多次发文推广。专业方面,自2020年1月22日《新型冠状病毒感染的肺炎防控方案(试行第二版)》开始提倡中医辨证施治;1月29日,钟南山院士呼吁:“中医一开始就要介入,别到最后不行了才找中医”;2月11日,中纪委官网罕见跨界发声,力挺中医。清肺排毒汤、透解祛瘟颗粒、藿香正气制剂、连花清瘟制剂、血必净注射液等一批中药成为明星药品,中医药在轻症患者中抑制病情恶化,促进核酸转阴;在重症、危重症患者中抑制病情加重、挽救生命、减少死亡、促使病情向轻症转归,对不同程度患者都取得不俗疗效。

    COVID-19患者的临床表现、影像学改变、生化指标变化及病理改变都表明,人体免疫系统与病毒作战后的炎性渗出对呼吸膜及气道的阻碍是呼吸抑制的主要原因;而免疫反应过度带来的细胞因子风暴则是对肺、肾、心脏、血管、肝等产生损害使得病情突然加重,以致多脏器衰竭的主要原因。因此,及时清除炎性渗出;干预免疫过激反应,成为临床治疗的关注重点。如何利用中药达成上述两点就成为笔者关注之处,故推荐在COVID-19患者的早期救治、整个救治过程及康复中,使用活血化瘀类和虫草菌发酵制剂两类中药。

    正常情况下,氧气从肺泡向血液弥散,依次经过肺泡内表面的液膜、肺泡上皮细胞(单层)膜、肺泡与肺毛细血管之间的间质、毛细血管的内皮细胞膜等4层膜(呼吸膜)。从前述病理改变中可以看出,支气管被黏液和出血渗出物覆盖;肺泡内、肺泡上皮细胞内、肺泡间隔、毛细血管内都有炎性渗出,细胞坏死、脱落,出血,炎性细胞间质浸润,肺间质纤维化,说明气道不通畅,呼吸膜换气也深受影响。利用活血化瘀药物早期干预,应尽早、尽快将炎性渗出物清除,保持呼吸膜及气道畅通,避免出现这些晚期病理后果,显得非常重要。

    在《新型冠状病毒肺炎诊疗方案(试行第七版)》[1]中,不论西医,还是中医治疗COVID-19患者的方案里都提到血必净注射液,尤其是中医在重症、危重症(内闭外脱证)中都提及使用该药品。它由红花、赤芍、川芎、丹参、当归五味活血化瘀类中药组方,清热凉血,化瘀解毒。用于温热类疾病,症见发热、喘促、心悸、烦躁等瘀毒互结证:适用于因感染诱发的全身炎症反应综合征;也可配合治疗多器官功能失常综合征的脏器功能受损。它在COVID-19患者的治疗中,实际上主要发挥化瘀解毒作用,通过活血化瘀,打扫人体免疫系统与病毒作战的战场:通过清理被免疫细胞吞噬和分解的病毒残渣、抗原抗体复合物、炎性渗出物,既可避免过激的全身炎症反应,又可保持呼吸膜气体交换的畅通,病情不至于发展到细胞因子风暴和呼吸抑制阶段而出现溺水样被活活憋死的惨剧,这也是经中医治疗后,可以保持病情稳定,较少向重症及危重症发展,避免症状急剧恶化的主要原因之一。

    因此,在COVID-19患者的治疗中,活血化瘀中药的使用非常有意义,安全性较高的三七制剂、三七总皂苷制剂血栓通和血塞通、丹参制剂、西红花等中药在患者的救治和后期的康复中都有应用价值。

    3.2.1   冬虫夏草

    冬虫夏草为线虫草科冬虫夏草菌Ophiocordyceps sinensis (Berk.) G.H.Sung,J.M. Sung,Hywel-Jones & Spatafora侵染蝙蝠蛾科Hepialidae幼虫而形成的幼虫尸体与真菌子座的复合体。2015年版《中国药典》对其记载[2]:甘,平。归肺、肾经。补肾益肺,止血化痰。用于肾虛精亏,阳痿遗精,腰膝酸痛,久咳虛喘,劳嗽咯血。其临床应用集中于中医所说的肺肾疾病,笔者推荐在COVID-19患者的治疗和恢复期复健中使用,青海省及省内玉树州杂多和囊谦县、果洛甘德、黄南州等地都为武汉疫情捐赠了冬虫夏草,但因为其价格较高而小众,利润空间大而造假手段多样,现在有经济性更好的虫草菌发酵制剂可以替代,故在此不予深入讨论。

    很多人服用冬虫夏草是为了提高免疫力,但是很少有人了解,冬虫夏草还能抑制免疫力!芬戈莫德系1994年日本学者自冬虫夏草中提取,并经结构改造后制成的免疫抑制剂,作用于淋巴细胞。用于器官移植、自身免疫疾病,不会引起广泛的免疫抑制。已被FDA批准用于复发型多发性硬化症患者,减少复发,延迟残疾进展,还被用于心脏衰竭和心律失常[3]。目前,器官移植后,临床上将冬虫夏草与免疫抑制剂同用,可协同抗排异。

    3.2.2   虫草菌发酵制剂

    这个称呼来源于2017年国家医保药品目录中成药部分第360号,包括百令片(胶囊)等6种。2019年国家医保目录:ZA09FA补气养血剂,396百令片(胶囊),397金水宝片(胶囊)▲(标有“▲”的药品仅限参保人员门诊使用和定点药店购药时医保基金方予支付)。在这两版医保目录中,都属于医保乙类,医保适应证限器官移植抗排异、肾功能衰竭及肺纤维化。

    百令片(胶囊)的原料药是冬虫夏草的真菌(冬虫夏草虫体断面白色的菌丝部分)经低温长时间液体深层发酵所得菌丝体的干燥品。中国科学院微生物研究所的学者于2004年揭示,冬虫夏草真菌与百令制剂的菌种中国被毛孢Cs-C-Q80的基因序列差别约为2%,是同一菌种[4]。2010年10月1日实施的2010年版《中国药典》做了更正,百令制剂的原料改名为发酵冬虫夏草菌粉(Cs-C-Q80,中华被毛孢)。同年10月12日,国家食品药品监督管理局颁布《国家药品标准(修订)颁布件》(批件号ZGB2010-4),将百令片(胶囊)的原料发酵虫草菌粉更名为发酵冬虫夏草菌粉。这就将百令片(胶囊)与其他虫草菌发酵制剂的原料在药典和国家质量标准上做出了明确区分,金水宝制剂的原料是发酵虫草菌粉(蝙蝠蛾拟青霉Cs-4)。

    由于百令片(胶囊)原料是单一真菌成份,质量可控,没有冬虫夏草的细菌、霉菌、虫卵等病原体及重金属超标之虞,药品分类管理属于乙类OTC药品,也没有造假的隐忧,安全、有效、经济,临床主要用于呼吸科[5-8]的慢阻肺、支气管哮喘、慢性支气管炎、肺纤维化、肺结核、肺气肿、矽肺;肾内科[9-12]的肾小球肾炎、系统性红斑狼疮性肾炎、过敏性紫癜肾炎、IGA肾病、糖尿病肾病、慢性肾功能不全、肾衰竭、高血压肾损害、肾移植所致的肾功能损坏、肾病综合征等;器官移植科[13-14]将其与免疫抑制剂配伍,用于器官移植抗排异反应,日剂量6~12 g,平均8 g。

    百令片(胶囊)的3个医保适应证限定为:肺纤维化、肾衰竭和器官移植抗排异。这恰好覆盖了免疫反应过度带来的细胞因子风暴及其对肺和肾的损害,非常适合所有COVID-19患者。尽早服用该药,能够通过调节人体免疫力,避免或减轻细胞因子风暴带来的病情急剧恶化,且能抗肺纤维化、抗肾衰竭,加速患者的康复。

    百令片(胶囊)等6种虫草菌发酵制剂在菌种、原料药菌粉的生产、制剂的质量标准、剂型选择、临床应用的适应证等方面还是有很大区别的,目前得到临床认可的主要是百令片(胶囊)及金水宝制剂。

    综上,肺泡内炎性渗出液及透明膜形成,肺泡细胞和肺内气管及毛细血管上皮细胞损伤,肺纤维化都影响呼吸膜气体交换,导致呼吸抑制;细胞因子所致炎症风暴是病情急剧恶化及致死的主要原因,心脏、血管、肝脏、肾损害是多脏器衰竭的原因,中药活血化瘀类药物在保证呼吸膜和气道畅通方面能够发挥作用;而以百令片(胶囊)为代表的虫草菌发酵制剂,其医保限定的3个适应证:肺纤维化、肾功能衰竭、器官移植抗排异正好能覆盖COVID-19的主要病理改变,希望临床救治中给予重视,尽早使用这两类药物,既可避免病情突然急剧恶化,也有助于患者病情的早日转归。在这次疫情防治中,中医药的作用更加深入人心,必将促进中医药事业的良性发展,更好地造福百姓。

  • 图  1  实时荧光定量PCR程序

    图  2  CRELD2基因候选引物的扩增曲线与溶解曲线

    图  3  RT-PCR检测不同组织中CRELD2 mRNA的水平

    注:**P<0.01,与胃组织比较;##P<0.01,与肝脏组织比较;△△P<0.01,与肺组织比较

    图  4  不同抗体检测CRELD2蛋白表达效果图

    图  5  不同组织中CRELD2蛋白的表达水平

    注:**P<0.01,与肝脏组织比较;##P<0.01,与胃组织比较;△△P<0.01,与肺组织比较

    表  1  CRELD2基因候选引物序列

    CRELD2 引物序列(5' to 3')
    上游引物1ACTTTGAGTGCAACCAACTCTT
    下游引物1CCGCTGCAATAGCCGTTTC
    上游引物2GCCAGGAAGAATTTCGGTGG
    下游引物2CATGATCTCCAGAAGCCGGAT
    上游引物3TTGCAGAGGAACGAGACCCA
    下游引物3GCCGTTGACATTCTCACAGTA
    下载: 导出CSV
  • [1] MIAO Z W, HU W J, LI Z Y, et al. Involvement of the secreted protein Metrnl in human diseases[J]. Acta Pharmacol Sin,2020,41(12):1525-1530. doi:  10.1038/s41401-020-00529-9
    [2] 王治, 王淑娜, 徐添颖, 等. 烟酰胺磷酸核糖转移酶基因编辑对人胚胎干细胞生长影响的研究[J]. 药学实践杂志, 2019, 37(3):237-240. doi:  10.3969/j.issn.1006-0111.2019.03.009
    [3] WANG S N, XU T Y, LI W L, et al. Targeting nicotinamide phosphoribosyltransferase as a potential therapeutic strategy to restore adult neurogenesis[J]. CNS Neurosci Ther,2016,22(6):431-439. doi:  10.1111/cns.12539
    [4] 李安, 周小青, 孙阔, 等. 药物分子与靶蛋白相互作用的研究进展[J]. 药学实践杂志, 2019, 37(1):1-4,31. doi:  10.3969/j.issn.1006-0111.2019.01.001
    [5] MASLEN C L, BABCOCK D, REDIG J K, et al. CRELD2: gene mapping, alternate splicing, and comparative genomic identification of the promoter region[J]. Gene,2006,382:111-120. doi:  10.1016/j.gene.2006.06.016
    [6] OH-HASHI K, KOGA H, IKEDA S, et al. Role of an ER stress response element in regulating the bidirectional promoter of the mouse CRELD2 - ALG12 gene pair[J]. BMC Genomics,2010,11:664. doi:  10.1186/1471-2164-11-664
    [7] ORTIZ J A, CASTILLO M, DEL TORO E D, et al. The cysteine-rich with EGF-like domains 2 (CRELD2) protein interacts with the large cytoplasmic domain of human neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunits[J]. J Neurochem,2005,95(6):1585-1596. doi:  10.1111/j.1471-4159.2005.03473.x
    [8] OH-HASHI K, KOGA H, IKEDA S, et al. CRELD2 is a novel endoplasmic Reticulum stress-inducible gene[J]. Biochem Biophys Res Commun,2009,387(3):504-510. doi:  10.1016/j.bbrc.2009.07.047
    [9] HARTLEY C L, EDWARDS S, MULLAN L, et al. Armet/Manf and Creld2 are components of a specialized ER stress response provoked by the inappropriate formation of disulfide bonds: implications for genetic skeletal diseases[J]. Hum Mol Genet,2013,22(25):5262-5275. doi:  10.1093/hmg/ddt383
    [10] OH-HASHI K, NORISADA J, HIRATA Y, et al. Characterization of the role of MANF in regulating the secretion of CRELD2[J]. Biol Pharm Bull,2015,38(5):722-731. doi:  10.1248/bpb.b14-00825
    [11] ZHANG J Y, WENG Y G, LIU X, et al. Endoplasmic Reticulum (ER) stress-inducible factor cysteine-rich with EGF-like domains 2 (Creld2) is an important mediator of BMP9-regulated osteogenic differentiation of mesenchymal stem cells[J]. PLoS One,2013,8(9):e73086. doi:  10.1371/journal.pone.0073086
    [12] NUNDLALL S, RAJPAR M H, BELL P A, et al. An unfolded protein response is the initial cellular response to the expression of mutant matriline-3 in a mouse model of multiple epiphyseal dysplasias[J]. Cell Stress Chaperones,2010,15(6):835-849. doi:  10.1007/s12192-010-0193-y
    [13] BOYLE S T, POLTAVETS V, KULAR J, et al. ROCK-mediated selective activation of PERK signaling causes fibroblast reprogramming and tumor progression through a CRELD2-dependent mechanism[J]. Nat Cell Biol,2020,22(7):882-895. doi:  10.1038/s41556-020-0523-y
    [14] KERN P, BALZER N R, BLANK N, et al. Creld2 function during unfolded protein response is essential for liver metabolism homeostasis[J]. FASEB J,2021,35(10):e21939.
    [15] CHEN M F, CHANG C H, YANG L Y, et al. Synovial fluid interleukin-16, interleukin-18, and CRELD2 as novel biomarkers of prosthetic joint infections[J]. Bone Joint Res,2019,8(4):179-188. doi:  10.1302/2046-3758.84.BJR-2018-0291.R1
    [16] KIM Y, PARK S J, MANSON SR, et al. Elevated urinary CRELD2 is associated with endoplasmic Reticulum stress-mediated kidney disease[J]. JCI Insight,2017,2(23):92896. doi:  10.1172/jci.insight.92896
    [17] CANAVES J M, MORSE A, WEST B. PCR primer selection tool optimized for high-throughput proteomics and structural genomics[J]. BioTechniques,2004,36(6):1040-1042. doi:  10.2144/04366BC01
    [18] ASIM A, AGARWAL S, PANIGRAHI I, et al. CRELD1 gene variants and atrioventricular septal defects in Down syndrome[J]. Gene,2018,641:180-185. doi:  10.1016/j.gene.2017.10.044
    [19] BECKERT V, RASSMANN S, KAYVANJOO AH, et al. Creld1 regulates myocardial development and function[J]. J Mol Cell Cardiol,2021,156:45-56. doi:  10.1016/j.yjmcc.2021.03.008
    [20] CLARK H F, GURNEY A L, ABAYA E, et al. The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment[J]. Genome Res,2003,13(10):2265-2270. doi:  10.1101/gr.1293003
    [21] CLARKE R, RESSOM H W, WANG A T, et al. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data[J]. Nat Rev Cancer,2008,8(1):37-49. doi:  10.1038/nrc2294
    [22] GRIFFIN M, ABU-EL-HAIJA M, ABU-EL-HAIJA M, et al. Simplified and versatile method for isolation of high-quality RNA from the pancreas[J]. Biotechniques,2012,52(5):332-334. doi:  10.2144/0000113862
    [23] AZEVEDO-POULY A C P, ELGAMAL O A, SCHMITTGEN T D. RNA isolation from mouse pancreas: a ribonuclease-rich tissue[J]. J Vis Exp,2014(90):e51779.
  • [1] 徐尧, 马春辉, 李志勇.  高血压对心血管纤维化及sFRP2表达的影响 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202409055
    [2] 周文艳, 胡珊珊, 张万年, 庄春林.  Keap1-Nrf2通路在炎症疾病中的研究进展 . 药学实践与服务, 2025, 43(3): 97-108, 116. doi: 10.12206/j.issn.2097-2024.202405013
    [3] 詹济华, 颜滢.  低蛋白血症对头孢哌酮血药浓度的影响 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202309040
    [4] 冯婷婷, 张景翔, 王彦, 许维恒, 张俊平.  ANXA3基因及蛋白的研究进展 . 药学实践与服务, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
    [5] 陈灿昕, 缪竹威, 缪朝玉.  血小板特异性Metrnl基因敲除小鼠模型的构建与验证 . 药学实践与服务, 2025, 43(3): 117-123. doi: 10.12206/j.issn.2097-2024.202409031
    [6] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [7] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [8] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [9] 王雪莲, 郑斯莉, 李志勇, 罗亨宇, 缪朝玉.  全身过表达人METRNL基因小鼠模型的构建与验证 . 药学实践与服务, 2024, 42(5): 198-202, 222. doi: 10.12206/j.issn.2097-2024.202311014
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4421
  • HTML全文浏览量:  1551
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2022-03-12
  • 网络出版日期:  2022-05-25
  • 刊出日期:  2022-03-25

CRELD2在小鼠组织中的表达水平研究

doi: 10.12206/j.issn.1006-0111.202111038
    基金项目:  国家自然科学基金重点项目(No 82030110); 上海市2021年度“科技创新行动计划”实验动物研究领域项目(No 21140901000)
    作者简介:

    常富强,硕士研究生,Email:18301995262@163.com

    通讯作者: 缪朝玉,教授,博士生导师,研究方向:心脑血管药理学,Email:cymiao@smmu.edu.cn
  • 中图分类号: R965

摘要:   目的  通过不同方法在基因及蛋白质水平探究CRELD2在小鼠各组织中的表达水平,为研究CRELD2在各组织中的生物学功能提供依据。  方法  通过实时荧光定量聚合酶链式反应(RT-PCR)及蛋白质印迹法(Western Blot,WB)测定C57BL/6J小鼠的肝、胰腺、胃、肺等组织中CRELD2 mRNA与CRELD2蛋白的含量,实现在不同水平上探究CRELD2在各组织中的表达情况。  结果  RT-PCR及WB测定结果显示,CRELD2在小鼠的肝、胰腺、胃、肺组织中均有表达,表达量在各组织间存在差异;基因水平的相对表达量排序为:胰腺>胃>肝>肺;蛋白水平的相对表达量排序为:胰腺>肝>胃>肺。检测结果表明CRELD2在各组织中普遍存在,但组织间相对表达量的排序并不完全一致,推测与转录调控相关。  结论  CRELD2在小鼠的肝、胰腺、胃、肺组织中均有表达,且相对表达量在基因与蛋白质水平不完全平行。

English Abstract

尤本明, 王忠壮. 新冠肺炎患者救治及康复中的中药治疗思考[J]. 药学实践与服务, 2020, 38(2): 101-104. doi: 10.3969/j.issn.1006-0111.202003061
引用本文: 常富强, 王淑娜, 汪东昇, 缪朝玉. CRELD2在小鼠组织中的表达水平研究[J]. 药学实践与服务, 2022, 40(2): 125-131. doi: 10.12206/j.issn.1006-0111.202111038
YOU Benming, WANG Zhongzhuang. Traditional Chinese medicine in the treatment and rehabilitation for Coronavirus Disease 2019[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(2): 101-104. doi: 10.3969/j.issn.1006-0111.202003061
Citation: CHANG Fuqiang, WANG Shuna, WANG Dongsheng, MIAO Chaoyu. Expression of CRELD2 in mouse tissues[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(2): 125-131. doi: 10.12206/j.issn.1006-0111.202111038
  • 分泌蛋白在机体生理及疾病的生物学途径中起着不可或缺的作用,新分泌蛋白的发现与研究对疾病的诊断和治疗具有重要意义[1-4]。CRELD2是一种富含半胱氨酸的表皮生长因子样结构域,属于表皮细胞生长因子(EGF)超家族中与CRELD1同源的新型分泌蛋白。CRELD2基因最早因参与调节内质网应激被认识[5-9],即参与内质网应激信号传导反应和未折叠蛋白反应[6, 9-10];同时参与乙酰胆碱受体α4和β2亚基的细胞内转运[7]。在骨髓间充质干细胞中,CRELD2具有增强骨形态发生蛋白-9诱导的成骨和基质矿化的作用[11],与软骨基质蛋白-3结合,在软骨发育中发挥基础性作用[12]。另外,CRELD2是PERK-ROCK通路中肿瘤相关成纤维细胞的旁分泌因子,参与肿瘤微环境的形成[13];也有研究表明,CRELD2在肝脏代谢稳态的维持和调节中发挥重要作用[14]。此外,CRELD2具有作为诊断人工关节感染和术后急性肾损伤早期预测的生物标志物潜质[15-16]。因此,阐明CRELD2的组织表达情况及组织特异性,将有助于更有指向性地研究其生物学功能及其相关作用机制。

    • SPF级10周龄C57BL/6小鼠,体重为(24.53±3.61) g,购于上海西普尔-必凯实验动物有限公司。实验动物的饲养条件为具有IVC系统的动物房:人工照明时间12 h;温度为(23±2) ℃;相对湿度40%~60%;噪音<60 dB,动物自由饮食进水。本实验方案设计及实验操作均遵守“3R”(Reduction, Replace-ment, Refinement)原则等动物福利相关规定。

    • 75%乙醇、无水乙醇、甲醇、三氯甲烷、异丙醇、盐酸胍(国药集团);吐温20(DC25BA00); 5×PrimeScript RT Master Mix(AJ90851A)、DNA标记物(AJ50972A)、裂解液(Trizol)购自宝日医生物技术;小鼠-GAPDH-引物(上海生工);BCA蛋白定量试剂盒、20×PBS缓冲液、20×TBS 缓冲液(碧云天);抗体A:抗CRELD2 抗体(51148-T56,义翘神州);抗体B:抗CRELD2 抗体(bs-8185R, 博奥森);抗体C:鼠CRELD2 抗体(AF3686,R&D Systems);蛋白酶抑制剂、磷酸酶抑制剂、苯甲基磺酰氟(PMSF, 上海康成);氨基丁三醇(Tris)、甘氨酸、30%聚丙烯酰胺溶液、Tris(pH6.8)、Tris(pH8.8)、四甲基乙二胺(TEMED)、过硫酸铵、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE, 上海博光);SYBR green 反应混合物(默克生命科学)。

    • 7500荧光定量PCR仪(赛默飞);离心管、EP管、组织冻存管;TP600 PCR仪(宝日医生物技术);Wonbio-48P高通量组织研磨仪(上海万柏);Tanon5200化学发光图像分析系统(上海天能);恒温振荡器(上海鼎国);漩涡混合仪(大连竞迈);Fresco21冷冻高速离心机(赛默飞);超微量分光光度计(GE Healthcare,默克);VE-60蛋白电泳槽(天能);NC膜(D105872,沃特曼);STS-3脱色摇床(琪特仪器)。

    • 在NCBI数据库中查找CRELD2基因序列,根据引物设计原则(GC占比:40%~60%;引物长度:15~30 bp;Tm:58~62 ℃;上下游引物的Tm差值<2;扩增片段长度:60~150 bp)应用PrimerBank与Primer-Blast数据库,设计得到CRELD2基因的引物序列,引物设计完成后由上海生工合成。之后通过PCR扩增曲线与溶解曲线对于引物的特异性与扩增效率进行评价,获得CRELD2基因特异性引物序列。

    • ⑴肝、胃、肺等组织通用型RNA提取方法:小鼠称重麻醉后取仰卧位固定,取适量肝、胃、肺等组织(针对不同动物个体,于各组织器官同一位置进行取材)置研磨管中,加入1 ml Trizol Reagent及钢珠,充分混匀后使用高通量组织研磨仪研磨(60 Hz,30 s,5次)至无块状组织;高速冷冻离心机离心(4 ℃,12000 r/min,15 min)后取上层红色液体,室温静置;加入200 μl氯仿,用小型涡旋仪剧烈震荡15 s,室温静置10 min自然分层;离心(4 ℃,12000 r/min,15 min)后溶液为三层(上层无色透明为RNA、中层白色为DNA、下层为裂解液和蛋白质混合物),取上层加入等体积的异丙醇混匀后室温静置10 min;离心(4 ℃,12000 r/min,15 min),弃上清得白色RNA沉淀;加入1 ml 75%乙醇重悬RNA沉淀;离心(4 ℃,7500 r/min,15 min),弃上清得RNA沉淀,静置挥发去除乙醇,加入适量DEPC水溶解RNA沉淀,使用超微量分光光度计检测RNA浓度及纯度,调整RNA终浓度(范围:400~500 ng/ μl)以便于逆转录,样品于−80 ℃保存。

      ⑵胰腺组织特异性RNA提取方法:小鼠称重麻醉后,迅速轻柔地分离出胰腺组织(减少胰酶的自身消化),放入装有液氮的研钵中研磨成粉后装入EP管,加入1 ml Trizol混匀。按照Trizol法步骤继续操作得到RNA沉淀,对其中残留的RNA酶进行清除(3~4次):加入原体积1/2的6 mol/L盐酸胍(含β-巯基乙醇)使沉淀溶解,按照1∶15加入1 mol/L冰乙酸与无水乙醇的混合溶液,于−20 ℃静置15 min,之后离心(4 ℃,12000 r/min,15 min)得到RNA沉淀,经75%乙醇洗涤晾干后溶于DEPC水,即获得胰腺组织总RNA。

    • cDNA的稳定性较RNA好,不易降解,为保证逆转录效率,选择纯度良好的RNA(A260 nm/280 nm:1.8~2.0)配制逆转录10 μl体系(5×Primer Script RT Master Mix:2 μl;RNA:500 ng/浓度;RNase free H2O加至10 μl),得到稳定的cDNA。

    • 使用获得的各组织cDNA样品配制20 μl体系(SYBR Green Master:10 μl;CRELD2基因引物:1 μl;cDNA:2 μl;ddH2O:7 μl),通过检测SYBR荧光染料与DNA双链非特异性结合的荧光信号强度,结合内参基因(GAPDH)的荧光信号强度获得各组织中CRELD2的相对含量,各样品均设置双复孔检测,PCR程序如图1

      图  1  实时荧光定量PCR程序

    • 分别取适量小鼠的肝、胰腺、胃、肺等组织(针对不同动物个体,于各组织器官同一位置进行取材)置研磨管中,加入400 μl冷的蛋白裂解液,使用高通量组织研磨仪研磨(60 Hz×30 s×5次)至无块状;冰上孵育30 min后离心(12000 r/min,15 min,4 ℃)获得上清即为蛋白样品。除用于双金鸡纳酸测定法(Bicinchoninic Acid Assay,BCA)定量所需量,向其余样品中加入其体积1/4的5×上样缓冲液后混匀,放置在恒温器(97 ℃)上变性10 min,自然冷却后获得总蛋白样品。

    • 从未变性的各总蛋白样品中各取10 μl,使用碧云天Bradford蛋白浓度测定试剂盒进行蛋白浓度测定:按需根据步骤配制蛋白标准品及BCA工作液,在96孔板中加入梯度稀释后的蛋白标准品,每孔定量至20 μl;同时设置样品检测孔:取各待测蛋白样品1 μl分别加入到 96孔板中定量至20 μl;各孔中均加入200 μl BCA工作液,37 ℃孵育30 min后使用Infinite M200多功能酶标仪检测在570 nm波长下的吸光度值,计算获得蛋白样品的浓度。

    • ⑴制胶:根据CRELD2的分子量及预实验结果选定分离胶浓度为12 %,按成分比例表配制分离胶加入制胶槽的玻璃板之间,用适量异丙醇去除气泡并保持胶面平整至其完全凝固;之后配制积层胶:待各成分混匀加入制胶槽的玻璃板之间,插入梳子待其自然凝固加样电泳。

      ⑵加样及电泳:将胶板与电泳电极连接好装入电泳槽内,加1×电泳缓冲液,依顺序将蛋白样品与Marker加入梳孔中(加样量:20~50 μg)。电泳的电压设置:80 V,30 min,之后120 V继续电泳至分离胶中Marker分离完全即停止电泳。

      ⑶电转膜:选用NC膜并裁剪至合适大小,采用湿转法,电转在冰水混合物的环境中进行,条件设置为:100 V,1 h。

      ⑷封闭:使用脱脂奶粉对NC膜进行封闭(室温摇床上封闭3 h,也可4℃过夜),封闭结束后用1×PBS洗膜(5 min,3次)。

      ⑸抗体孵育:根据各抗体的稀释比例配制抗体溶液,于孵育盒中对NC膜进行一抗孵育(室温,摇床3~4 h;或 4 ℃静置过夜)。孵育结束后用1×PBST洗膜(5 min,6次),之后进行孵育二抗(室温静置1 h)。

      ⑹成像分析:1×PBST洗膜(5 min,3次)后,使用Tanon5200化学发光图像分析系统成像并分析结果。

    • 本实验数据均采用(Mean±SEM)的方式作图;两组之间比较时,满足方差齐性和正态分布的连续型计量资料数据采用t检验进行比较;仅方差不齐时采用Satterthwaite近似t检验;若两者均不满足则采用秩和检验。使用SPSS 11.0对数据进行统计分析,当P<0.05时,差异具有统计学意义。分析结果用GraphPad Prism 8.0软件作图。

    • 根据对溶解曲线及扩增曲线的筛选标准:①在相同温度条件下,扩增曲线拟合度一致性好且曲线的定点斜率较大;②溶解曲线拟合度一致性好且其溶解温度稳定,溶解曲线的峰值高,表明引物能够较好地与扩增片段解链并完成结合扩增[17],我们使用3种候选引物序列(表1)分别扩增了同一肝脏组织来源的CRELD2 cDNA样品,结果如图2。扩增曲线拟合度一致性排序:引物2>引物3>引物1;溶解曲线峰值:引物1与引物3较引物2低。因此,引物2序列被用于本实验研究。

      表 1  CRELD2基因候选引物序列

      CRELD2 引物序列(5' to 3')
      上游引物1ACTTTGAGTGCAACCAACTCTT
      下游引物1CCGCTGCAATAGCCGTTTC
      上游引物2GCCAGGAAGAATTTCGGTGG
      下游引物2CATGATCTCCAGAAGCCGGAT
      上游引物3TTGCAGAGGAACGAGACCCA
      下游引物3GCCGTTGACATTCTCACAGTA

      图  2  CRELD2基因候选引物的扩增曲线与溶解曲线

    • 选用CRELD2-引物 2通过RT-PCR对小鼠的肝、胰腺、胃、肺组织中的CRELD2 mRNA水平进行测定,并以小鼠GAPDH特异性引物作为内参对照,比较各组织中CRELD2 mRNA的相对表达水平,结果如图3所示:在肝、胰腺、胃、肺组织中均可检测到CRELD2的基因表达;且CRELD2在不同组织中的表达水平有差异(以胰腺组织为基准,对其余各组织中的相对表达量进行标化),组织间相对表达量为:胰腺>胃>肝>肺,提示在4种组织中以胰腺中的表达水平最高、肺中表达水平最低。需要注意的是,无论是组织通用型RNA提取法还是胰腺组织特异性RNA提取法,胰腺中的表达水平在4种组织中均居首位(结果未显示),实验结果图3采用的是后一提取方法。

      图  3  RT-PCR检测不同组织中CRELD2 mRNA的水平

    • 为确保WB检测小鼠各组织中CRELD2蛋白的表达水平的结果准确可靠,我们从市面上可购买到的抗CRELD2抗体中,根据其产品说明标注的应用范围选择了3种适用于WB的不同品牌抗体,按照各自的使用说明对同批次的组织蛋白样品进行WB测定,结果如图4:抗体A在非目的条带所在位置出现条带,存在双条带;抗体B出现非特异性条带,且与抗体A或C相比,其目的条带普遍较淡;与抗体A或B相比,抗体C目的条带较清晰、无杂带。考虑到不同品牌抗体的使用条件各异,所以不同抗体的产品说明虽然在应用范围上有重合,但仍有各自较为适用的应用范围。根据本实验的操作条件与抗体WB条带结果,抗体C被用于进一步的蛋白水平检测。

      图  4  不同抗体检测CRELD2蛋白表达效果图

    • 由WB检测小鼠各组织中CRELD2蛋白的表达水平,如图5所示:对于肝、胰腺、胃、肺等不同组织来源的蛋白样品,均可见CRELD2蛋白条带且其灰度值之间存在差异,相对表达量由高至低分别为:胰腺>肝>胃>肺。由此可见,CRELD2蛋白在胰腺、肝、胃、肺4种组织中均有表达,且在4种组织中表达水平不同,以胰腺表达水平最高、肺的表达水平最低。

      图  5  不同组织中CRELD2蛋白的表达水平

    • 在获得小鼠胰腺、肝、肺、胃4种组织样本的基础上,对于同种组织样品进行同批次提取总蛋白及总RNA,对同批次样品进行RT-PCR及WB测定CRELD2的表达情况,如上述结果显示(图3图5):在基因与蛋白质水平,CRELD2在小鼠胰腺、肝、肺、胃4种组织中均有表达,且无论在基因还是蛋白质水平,4种组织中胰腺组织中的表达量最高、肺组织中表达水平最低;但4种组织中,CRELD2的基因和蛋白质水平并不完全一致,如RT-PCR结果显示,在胃组织中CRELD2基因的相对表达量高于肝脏组织,而WB结果显示,肝脏组织中CRELD2蛋白的相对表达量高于胃组织,对于个别组织间的相对表达量排序在不同水平上有差异,但整体趋势保持一致。因此,无论在基因还是蛋白质水平,CRELD2在小鼠各组织中均有表达,但在不同表达水平上各组织中CRELD2的相对表达量略有不同。

    • CRELD2与CRELD1共同构成CRELD蛋白家族,是EGF超家族的新成员[5]。目前CRELD2相关研究主要围绕内质网应激展开,研究方向尚不集中,而与之同源的CRELD1现已明确与心脏房室间隔缺损密切相关[18-19]。本研究通过不同方法在基因及蛋白质水平探究CRELD2在各组织中的表达水平,对CRELD2的组织特异性研究具有重要意义。

      准确有效地阐明靶标蛋白在基因和蛋白水平的表达情况是生物学研究的重要内容,不同的检测方法具有各自的特点,通常采取多种方法综合验证以获得目的基因及蛋白质在不同类型组织或细胞中的确切表达情况[20-21]。在本实验中,在基因表达水平,我们针对CRELD2基因设计并筛选出用于扩增的引物序列;在蛋白表达水平,结合预选的蛋白条带结果选出了可用于WB的适用性抗体。本实验所需抗体主要用于WB测定,采取的验证与比较的方式比较单一,因此对于抗体综合效果的验证结果仅供参考。此外,我们改进优化了胰腺组织总RNA提取的方法,胰腺组织所处解剖学位置特殊且富含RNA酶,对其总RNA提取存在着取材困难、组织易自身消化、RNA易降解等问题。有研究报道可通过胰腺组织原位灌注RNA酶抑制剂来获得高质量的RNA,但操作困难且成本较高[22-23],由此我们做出了改进:①取材迅速结合液氮冷冻研磨,可减少冻融及胰酶对胰腺组织的自身消化;②增加Trizol用量,有效抑制RNA酶的活性;③使用盐酸胍(含β-巯基乙醇)溶解RNA沉淀并清除其中残留的RNA酶,减少降解,由此分离获得较高质量的胰腺组织总RNA。

      本实验通过RT-PCR及WB,在基因及蛋白水平检测了CRELD2在各组织器官中的表达水平,旨在综合不同方法的优势明确各组织中的表达情况,有指向性地研究CRELD2的生物学功能。由结果可见,采用上述2种方法探究CRELD2在不同组织中的表达水平是可行的,其相对表达量在组织间的差异整体趋势相符,可作为相互验证的依据以提高准确度。同时,我们也发现个别组织间的相对表达量排序在基因与蛋白质的不同水平上不完全平行,但差异不影响整体趋势的一致性,考虑CRELD2在个别组织中可能存在转录后的修饰与调节,由此造成差异。同时,后续将通过免疫组织化学、免疫荧光及酶联免疫吸附试验等方法阐明CRELD2在具体细胞内亚结构中的定位以及在其他水平上各组织中的表达情况,更好地为CRELD2生物学功能研究奠定基础。

参考文献 (23)

目录

/

返回文章
返回