留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

基于特征图谱及苯乙酮类成分含量测定的白首乌种属差异研究

林美玉 陈文华 徐凌川 韩婷 苏娟 张弛

孟祥庆, 李丽华, 王宏瑞, 贾丹, 贾敏. 基于网络药理学和反向分子对接的西红花抗肿瘤作用机制研究[J]. 药学实践与服务, 2023, 41(3): 160-167, 196. doi: 10.12206/j.issn.2097-2024.202206066
引用本文: 林美玉, 陈文华, 徐凌川, 韩婷, 苏娟, 张弛. 基于特征图谱及苯乙酮类成分含量测定的白首乌种属差异研究[J]. 药学实践与服务, 2023, 41(6): 366-371. doi: 10.12206/j.issn.2097-2024.202207036
MENG Xiangqing, LI Lihua, WANG Hongrui, JIA Dan, JIA Min. Anti-tumor mechanism study on saffron by network pharmacology and reverse molecular docking[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(3): 160-167, 196. doi: 10.12206/j.issn.2097-2024.202206066
Citation: LIN Meiyu, CHEN Wenhua, XU Lingchuan, HAN Ting, SU Juan, ZHANG Chi. Species differences of Baishouwu based on characteristic chromatogram and content determination of acetophenones[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(6): 366-371. doi: 10.12206/j.issn.2097-2024.202207036

基于特征图谱及苯乙酮类成分含量测定的白首乌种属差异研究

doi: 10.12206/j.issn.2097-2024.202207036
详细信息
    作者简介:

    林美玉,硕士,高级实验师,研究方向:中药分析,Email:linmeiyu18@126.com

    通讯作者: 苏 娟,副教授,研究方向:中药化学和质量评价研究,Email:juansu_2008@126.com

Species differences of Baishouwu based on characteristic chromatogram and content determination of acetophenones

  • 摘要:   目的  建立不同产地白首乌药材的指纹图谱,并测定苯乙酮类成分含量,为不同品种白首乌药材的质量控制提供科学依据。  方法  采用HPLC-DAD法建立白首乌药材HPLC指纹图谱,同时对4种苯乙酮类成分进行含量测定。其中,色谱柱为Diamonsil C18(4.6 mm× 250 mm, 5 μm),流动相为甲醇-0.1%磷酸梯度洗脱,流速为1 ml/min,柱温为30 ℃,检测波长为260 nm(4-羟基苯乙酮、白首乌二苯酮、2',4'-二羟基苯乙酮)和280 nm(2',5'-二羟基苯乙酮)。  结果  泰山白首乌、滨海白首乌及隔山消中化学成分差异显著,隔山消中总苯乙酮类成分含量明显高于滨海白首乌和泰山白首乌。  结论  以苯乙酮类成分为评价指标,隔山消的总苯乙酮含量较高,可作为白首乌药材的优质资源。
  • 西红花为名贵药材,来源于鸢尾科植物番红花Crocus sativus L.的干燥柱头。原产于地中海地区、希腊、小亚细亚和伊朗,后经西藏传入国内,故又名藏红花[1]。《本草纲目》中记载番红花“主治心忧郁积、气闷不散,活血,亦治惊悸”[2]。2020版《中国药典》描述西红花具有活血化瘀、凉血解毒、解郁安神的功效[3]。越来越多的现代药理研究表明,西红花具有抗肿瘤、抗血小板聚集与凋亡、抗心血管细胞凋亡、降血脂和降血糖等活性[46],在健康和医疗领域具有重要作用。

    世界卫生组织国际癌症研究机构(IARC)发布的最新数据,2020年全球癌症新发患者病例数超过1 930万例,癌症死亡患者接近1 000万例[7]。天然活性成分是抗肿瘤药物研发的重要来源[8]。有研究表明,西红花中特有的西红花酸、西红花苷等具有抗肿瘤活性[9],已有学者在西红花治疗结直肠癌、乳腺癌等的抗肿瘤作用方面进行了相关研究[10-11],但其主要活性成分及抗肿瘤作用机制仍需进一步探索。

    网络药理学[12]将系统生物学、生物信息学、计算生物学、网络科学和靶向药理学相结合,从系统层次和生物网络的整体角度探讨成分—靶标—通路的相互作用关系,为中药多靶点、多成分、系统性、整体性的作用机制研究提供了有力的技术支撑,从而指导新药研发和临床诊疗。因此,本研究应用网络药理学结合反向分子对接的方法,对西红花的抗肿瘤作用成分及靶点机制进行研究,为深入探索西红花抗肿瘤药效物质基础及作用机制提供参考。

    利用TCMSP平台获取西红花化学成分,口服生物利用度(oral bioavailability,OB)和类药性(drug-likeness,DL) 是药物筛选的关键参数,一般设置OB≥30%和DL≥0.18的化学成分作为候选药效成分,并结合文献报道[1315]补充4个西红花化学成分。

    应用TCMSP平台和PharmMapper[16]工具获取西红花活性成分的作用靶点,并借助UniProt数据库将靶点转换为对应基因。以“tumor”、“cancer”为关键词,在GeneCards(https://www.genecards.org/)、OMIM数据库(https://www.omim.org/)和TTD数据库(http://db.idrblab.net/ttd/)进行检索。将得到的疾病靶点和药物靶点取交集,作为药物作用于疾病的预测靶点。

    根据预测的西红花药效成分、交集靶点,使用Cytoscape 3.9.1软件建立“成分-靶点”的网络图。

    将药物疾病交集靶点输入String数据库构建PPI网络进行初步筛选,再将PPI网络导入Cytoscape 3.9.1中,以半数degree为参考标准,选取关键靶点。

    将筛选获得的37个核心靶点录入Metascape平台(http://metascape.org/gp/index.html),物种设置为人,选择Custom Analysis,设置P<0.01,进行基因本体(gene ontology,GO)功能富集分析及京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析。

    将筛选出的西红花主要活性成分通过PubChem下载SDF格式;利用RCSB PDB数据库下载关键蛋白靶点,优先选择有配体、结构相对完整的晶体结构,并采用AutoDock Tools对获取的PDB蛋白分子进行除水、加氢、计算电荷预处理;使用AutoDock Vina进行分子对接,计算结合能;选取最优构象,使用PyMOL软件做出3D结合模式图。

    通过TCMSP获得70个西红花化学成分,设置OB≥30%且DL≥0.18进行筛选,再添加文献检索相关成分,共获得9个西红花活性成分,见表1

    表  1  西红花活性成分
    序号化合物编号化合物英文名中文名OB (%)DL
    1MOL001389n-heptanal庚醛79.740.59
    2MOL001406crocetin西红花酸35.30.26
    3MOL000354isorhamnetin异鼠李素49.60.31
    4MOL000422kaempferol山柰酚41.880.24
    5MOL000098quercetin槲皮素46.430.28
    6MOL001405crocin Ⅰ西红花苷Ⅰ2.540.12
    7MOL001407crocin Ⅱ西红花苷Ⅱ1.650.21
    8MOL000720safranal藏红花醛39.560.04
    9MOL001409picrocrocin苦番红花素33.710.04
    下载: 导出CSV 
    | 显示表格

    将TCMSP平台和PharmMapper获取结果进行整理,并借助UniProt数据库进行靶基因匹配,获得201个潜在靶点。以“tumor”和“cancer”为关键词,在GeneCards、OMIM和TTD数据库进行预测整理,剔除重复,筛选得到5896个潜在疾病靶点。将得到的疾病靶点和药物靶点取交集,共得到可作为药物作用于疾病的179个预测靶点。

    将西红花的9个活性成分与预测到的179个潜在靶点导入Cytoscape 3.9.1软件,构建“药物-活性成分-靶点”网络(图1),网络中绿色代表药物作用于疾病的靶点,蓝色代表西红花活性成分,全图包括189个节点、299条边,其中degree值排名靠前的活性成分为槲皮素、山柰酚、异鼠李素、苦番红花素和西红花苷Ⅰ,这些可能是西红花发挥抗肿瘤作用的潜在活性成分。

    图  1  西红花抗肿瘤“化学成分-靶点”网络

    将疾病与活性成分的潜在靶点导入String数据库,采用Cytoscape 3.9.1软件绘制PPI网络图,依据degree值进行排序,以大于半数degree值为标准进行两次筛选,获取核心靶点37个(图2)。度值排名前5的靶点分别为EGF、MMP9、NFKBIA、IL-1B和IL-10,提示这些靶点可能是西红花发挥抗肿瘤作用的关键潜在靶点。

    图  2  基于PPI分析的核心靶点筛选

    GO分析常用于注释基因和基因产物生物功能,分析包括生物过程(biological process,BP)、分子功能(molecular function,MF)和细胞组成(cellular component,CC)三部分。此次GO富集分析共得到BP富集结果193个、CC富集结果83个和MF富集结果123个,选取排名前10的条目绘制GO功能分析图(图3)。如图3所示,BP主要涉及对激素的反应、对脂质的反应、对异源刺激的反应等;CC主要涉及膜筏、膜微区、囊腔、细胞质囊泡腔等;MF主要涉及转录因子结合、DNA结合转录因子结合、RNA聚合酶Ⅱ特异性DNA结合转录因子结合等。通过比较发现,细胞生物过程富集的基因数较多,说明西红花可能主要通过调节生物过程发挥抗肿瘤作用。

    图  3  GO富集分析结果(前10)

    KEGG分析共富集到194条信号通路,其中34条癌症相关通路,并对前20条通路绘制气泡图(图4)。依据KEGG分析,西红花可能通过p53信号通路、TNF通路发挥抗肿瘤作用,可能对膀胱癌、胰腺癌、前列腺癌、非小细胞肺癌等肿瘤具有治疗作用,西红花靶点-通路相互作用网络见图5,红色三角形代表与肿瘤相关的信号通路,蓝色矩形代表关键靶点。其中,西红花通过膀胱癌信号通路调控EGF、MMPs、Raf、VEGF、ERK等基因发挥抗肿瘤作用(图6),红色矩形代表西红花可能干预的关键靶点。

    图  4  KEGG富集分析气泡图(前20)
    图  5  西红花“靶点-通路”相互作用网络
    图  6  西红花与膀胱癌信号通路的相关靶点作用关系

    将前15个潜在核心靶点与西红花活性成分进行分子对接。结合能(affinity)<0表明配体分子能够与受体蛋白自发结合,结合能≤−17.78 kJ/mol表明配体与受体有一定的结合活性,结合能≤−20.92 kJ/mol 表明配体与受体有较好的结合活性,结合能≤−29.29 kJ/mol 表明配体与受体有强的结合活性[17],且结合能越低,表明对接的效果越好,结合的构象越稳定[18]。经AutoDock Vina对接,将得到的结合能数据使用热图展示(图7)。本研究结合自由能小于−20.92kJ/mol 的活性成分有102个,占75.6%;小于−29.29kJ/mol 的活性成分有73个,占54.1%,可见这些核心化合物与受体结合活性较高,结构相对稳定。选取结合能力最好的4个组合用Pymol软件进行可视化处理(图8)。

    图  7  分子对接分数热图分析
    图  8  西红花苷Ⅱ与核心靶点分子对接可视化 (结合能<−48 kJ/mol)

    肿瘤的发生和发展是多基因、多步骤的结果。中药多成分、多靶点的特点使其在肿瘤治疗方面有独特的优势。大量的临床实践表明,中药在治疗肿瘤中能够改善症状、提高患者生存质量、延长生存期等,有着其他治疗药物及手段不可替代的作用[19-20]。以中药黄芪为例,不仅可以通过Wnt5/β-catenin信号通路抑制肿瘤生长[21],同时具有通过PD-L1下调诱导耐药黑色素瘤的干性抑制和化疗敏感性增强的作用,可以减少化疗药物用量[22],还能充当免疫佐剂,提高患者免疫力,改善生存质量[23]。网络药理学最大的优势在于可以运用系统生物学的分析,为中药多成分、多靶点、多通路的机制研究提供有力的技术支撑[12],其分析理念和技术路径又与中医药治疗疾病的整体观相契合,已用于多种中药和中药复方作用机制的研究,如灯盏细辛、半枝莲等中药和茵陈蒿汤、桃红四物汤等中药复方,利用网络药理学的方法得到治疗机制的详细阐述和证明[2427],为中药药理作用机制的探索提供了很好的参考。

    本研究发现西红花中多种成分,如西红花酸、西红花苷等可与IL-6、AKT1、CCND1、IL-1β、MMP9、EGFR、TP53靶点产生适度结合,提示这些靶点可能是西红花中活性成分发挥抗肿瘤作用的关键靶点。研究发现,AKT1是PI3K-AKT-mTOR信号通路中的重要靶点,被磷酸化激活后可以促进细胞的增殖与存活,与肿瘤细胞的生长密切相关[28]。多项研究表明,通过抑制AKT1可以治疗肺癌、结肠癌、卵巢癌等多种实体癌[29]。EGFR与一些全球发病率和致死率高的癌症发病机制直接或间接相关,包括肺癌、乳腺癌和结直肠癌等[30]。当EGFR过度表达时,细胞表面会出现过量的受体,诱导正常的细胞转化为癌细胞,并为癌细胞持续生存提供条件[31]。CCND1是细胞周期家族的一员[32],公认的原癌基因,在甲状旁腺瘤、乳腺癌、肝癌及食管、肺、头颈部鳞状细胞癌的发生、发展过程中均起着重要作用[33-34]。西红花苷是由西红花酸和龙胆二糖或葡萄糖结合形成的二萜苷类化合物,西红花苷Ⅰ和西红花苷Ⅱ的差别在于分子中糖苷基数目的多少 [35]。西红花酸已具有抗肿瘤作用,以其为苷元形成的西红花苷同样也表现出较好的抗肿瘤活性,其中西红花苷Ⅱ的表现最好。西红花苷可以通过P53途径下调细胞周期蛋白d1和p21的表达,诱导细胞凋亡和细胞周期停滞,从而抑制肿瘤生长[36]。分子对接的结果与GO富集分析、KEGG通路富集分析结果一致,验证了网络药理学分析结果的正确性。

    Buyun等学者在肝癌Hep3B和HepG2细胞中使用西红花苷抑制了IL-6对STAT3以及细胞周期蛋白D1的激活,验证了西红花对肝癌细胞的抗增殖,凋亡和阻断入侵作用[37]。在转移性乳腺癌的研究中,Ali等研究人员在体内和体外实验中均证明了西红花苷可以通过VEGF和MMP9下调发挥抗肿瘤作用,而且对乳腺癌的转移扩散有较好的抑制作用[38]。这些研究成果在一定程度上验证了利用网络药理学探究发现的西红花抗肿瘤作用机制的可行性。

    综上所述,本研究利用网络药理学结合分子对接技术,探究西红花抗肿瘤作用的活性成分、作用靶点及信号通路。发现西红花抗肿瘤的作用具有多成分、多靶点、多通路、多机制的特点,其中以西红花苷为代表的西红花特有化学成分显示出了良好的抗肿瘤活性,可以在多条肿瘤发生通路中发挥作用,为西红花治疗肿瘤的深入研究提供了理论基础。但这些结果受限于各个数据库信息的片面性,而且只关注了成分,没有考量到成分的含量及其之间是否存在相互作用,预测的结果存在一定的片面性和局限性,需要进一步进行体内、外实验验证。

  • 图  1  白首乌中4种苯乙酮类成分结构式

    A.4-羟基苯乙酮;B.2',5'二羟基苯乙酮;C.白首乌二苯酮;D.2',4'二羟基苯乙酮

    图  2  白首乌HPLC色谱图

    A.白首乌指纹图谱;B.对照品;C.混合标准品;7. 4-羟基苯乙酮;8. 2',5'-二羟基苯乙酮;9. 白首乌二苯酮;10. 2',4'-二羟基苯乙酮

    图  3  22批白首乌样品的化学聚类分析

    图  4  22批白首乌PCA图

    图  5  不同物种白首乌中苯乙酮类化学成分含量

    表  1  25批白首乌样品来源

    样品产地物种类型
    S1山东济南泰山白首乌栽培(两年)
    S2山东临沂泰山白首乌栽培(两年)
    S3山东泰安泰山白首乌栽培(一年)
    S4山东临沂隔山消栽培(两年)
    S5四川巴蜀滨海白首乌饮片
    S6湖南湘西滨海白首乌野生
    S7四川成都滨海白首乌饮片
    S8湖南张家界滨海白首乌饮片
    S9广东广州滨海白首乌饮片
    S10山东济南隔山消栽培(两年)
    S11安徽阜阳滨海白首乌饮片
    S12四川遂宁滨海白首乌饮片
    S13安徽亳州滨海白首乌饮片
    S14江苏南京滨海白首乌饮片
    S15广西玉林滨海白首乌饮片
    S16江苏徐州滨海白首乌饮片
    S17贵州毕节滨海白首乌饮片
    S18江西南昌滨海白首乌饮片
    S19江苏滨海滨海白首乌饮片
    S20云南昆明滨海白首乌饮片
    S21云南大理滨海白首乌饮片
    S22安徽大别山隔山消野生
    S23四川广安隔山消野生
    S24陕西汉中隔山消野生
    S25河北安国滨海白首乌饮片
    下载: 导出CSV

    表  2  线性关系考察结果

    成分回归方程R2线性范围(μg)
    4-羟基苯乙酮Y=47 109X-22 8680.999 90.015 61-0.499 6
    2',5'二羟基苯乙酮Y =23 028X-12 3410.999 80.016 21-0.518 7
    白首乌二苯酮Y=15 075X-7 940.10.999 80.009 802-0.313 7
    2',4'二羟基苯乙酮Y=28 725X-12 8160.999 90.013 34-0.427 0
    下载: 导出CSV

    表  3  加样回收率实验结果

    成分加样量(m/g)样品含量(m/mg)加对照品量(m/mg)测得量(m/mg)回收率(%)平均回收率(%)RSD(%)
    4-羟基苯乙酮1.000 00.102 10.100 00.198 298.0797.772.07
    1.000 30.102 10.100 00.193 495.70
    1.000 60.102 20.100 00.204 8101.29
    1.000 20.102 10.100 00.193 695.79
    1.000 80.102 20.100 00.196 797.27
    1.000 90.102 20.100 00.199 398.57
    2',5'-二羟基苯乙酮1.000 00.087 30.090 00.179 3101.1199.151.57
    1.000 30.087 30.090 00.178 9100.90
    1.000 60.087 40.090 00.172 597.24
    1.000 20.087 30.090 00.174 998.64
    1.000 80.087 40.090 00.175 899.10
    1.000 90.087 40.090 00.173 797.91
    白首乌二苯酮1.000 00.742 10.750 01.487 299.6798.811.20
    1.000 30.742 30.750 01.459 197.77
    1.000 60.742 50.750 01.498 5100.40
    1.000 20.742 20.750 01.483 499.41
    1.000 80.742 70.750 01.452 997.33
    1.000 90.742 80.750 01.467 098.27
    2',4'-二羟基苯乙酮1.000 00.119 80.120 00.229 795.7996.771.19
    1.000 30.119 80.120 00.232 296.83
    1.000 60.119 90.120 00.236 298.46
    1.000 20.119 80.120 00.228 395.20
    1.000 80.119 90.120 00.231 996.67
    1.000 90.119 90.120 00.234 397.67
    下载: 导出CSV

    表  4  25批白首乌中苯乙酮类化学成分含量测定结果(n=3,mg/g)

    编号4-羟基
    苯乙酮
    2',5'-二羟
    基苯乙酮
    白首乌
    二苯酮
    2',4'-二羟
    基苯乙酮
    总苯乙酮
    类成分
    S10.274 80.071 80.137 60.529 8
    S20.470 90.045 40.344 70.384 01.432 3
    S30.069 50.015 40.077 60.196 7
    S40.497 50.311 12.808 60.683 74.373 9
    S50.380 50.044 20.696 70.218 31.397 9
    S60.679 30.065 31.781 40.360 82.955 1
    S70.277 10.064 50.890 90.338 91.598 0
    S80.290 40.020 40.650 60.240 41.247 7
    S90.070 80.059 60.595 70.086 90.858 2
    S100.364 50.155 52.171 70.402 23.115 2
    S110.202 00.132 11.697 60.264 52.328 4
    S120.210 40.034 21.192 00.211 91.676 6
    S130.114 50.084 21.011 40.127 61.372 0
    S140.095 00.070 60.703 30.110 31.028 3
    S150.061 50.041 70.482 90.067 40.701 4
    S160.102 10.087 30.742 10.119 81.066 0
    S170.067 60.026 80.522 40.121 50.804 0
    S180.088 80.067 50.867 20.105 91.160 1
    S190.084 30.048 80.705 20.112 00.966 7
    S200.064 20.052 60.742 40.083 50.955 2
    S210.072 60.048 30.424 00.068 00.648 6
    S220.209 00.113 22.710 90.401 73.469 3
    S230.212 90.118 32.683 90.410 03.456 4
    S240.392 70.099 82.466 80.383 33.359 6
    S250.110 50.092 31.023 10.161 41.400 3
    注:“−”表示含量很低,超出线性范围。
    下载: 导出CSV
  • [1] 彭蕴茹, 丁永芳, 李友宾, 等. 白首乌研究现状[J]. 中草药, 2013, 44(3):370-378. doi:  10.7501/j.issn.0253-2670.2013.03.026
    [2] 孙彦敏, 王辉, 徐凌川. 近10年白首乌研究进展[J]. 中国中医药信息杂志, 2015, 27(7):131-136. doi:  10.3969/j.issn.1005-5304.2015.07.041
    [3] CHEN W H, ZHANG Z Z, BAN Y F, et al. Cynanchum bungei Decne and its two related species for “Baishouwu”: a review on traditional uses, phytochemistry, and pharmacological activities[J]. J Ethnopharmacol,2019,243:112110. doi:  10.1016/j.jep.2019.112110
    [4] JIANG H W, LIN J, WANG G M, et al. Acetophenone derivatives from the root bark of Cynanchum wilfordii as potential neuroprotective agents[J]. Phytochem Lett,2018,24:179-183. doi:  10.1016/j.phytol.2018.02.002
    [5] SUN Y S, LIU Z B, WANG J H, et al. Aqueous ionic liquid based ultrasonic assisted extraction of four acetophenones from the Chinese medicinal plant Cynanchum bungei Decne[J]. Ultrason Sonochem,2013,20(1):180-186. doi:  10.1016/j.ultsonch.2012.07.002
    [6] HAN L, ZHOU X P, YANG M M, et al. Ethnobotany, phytochemistry and pharmacological effects of plants in genus Cynanchum Linn. (Asclepiadaceae)[J]. Molecules,2018,23(5):1194. doi:  10.3390/molecules23051194
    [7] 谢凯强. 隔山消化学成分及生物活性研究[D]. 贵阳: 贵州大学, 2017.
    [8] LEE M K, YEO H, KIM J, et al. Protection of rat hepatocytes exposed to CCl4 in-vitro by cynandione A, a biacetophenone from Cynanchum wilfordii[J]. J Pharm Pharmacol,2000,52(3):341-345.
    [9] YANG S B, LEE S M, PARK J H, et al. Cynandione A from Cynanchum wilfordii attenuates the production of inflammatory mediators in LPS-induced BV-2 microglial cells via NF-κB inactivation[J]. Biol Pharm Bull,2014,37(8):1390-1396. doi:  10.1248/bpb.b13-00939
    [10] KIM S H, LEE T H, LEE S M, et al. Cynandione A attenuates lipopolysaccharide-induced production of inflammatory mediators via MAPK inhibition and NF-κB inactivation in RAW264.7 macrophages and protects mice against endotoxin shock[J]. Exp Biol Med (Maywood),2015,240(7):946-954. doi:  10.1177/1535370214558022
    [11] KOO H J, SOHN E H, PYO S, et al. An ethanol root extract of Cynanchum wilfordii containing acetophenones suppresses the expression of VCAM-1 and ICAM-1 in TNF-α-stimulated human aortic smooth muscle cells through the NF-κB pathway[J]. Int J Mol Med,2015,35(4):915-924. doi:  10.3892/ijmm.2015.2112
    [12] JIANG H W, GU S S, CAO L, et al. Potential hypoglycemic effect of acetophenones from the root bark of Cynanchum wilfordii[J]. Nat Prod Res,2019,33(16):2314-2321. doi:  10.1080/14786419.2018.1443100
    [13] HA D T, TRUNG T N, HIEN T T, et al. Selected compounds derived from Moutan Cortex stimulated glucose uptake and glycogen synthesis via AMPK activation in human HepG2 cells[J]. J Ethnopharmacol,2010,131(2):417-424. doi:  10.1016/j.jep.2010.07.010
    [14] 王光辉, 王琦, 时元林. 泰山四大名药[J]. 山东中医杂志, 2006, 25(3):203-204. doi:  10.3969/j.issn.0257-358X.2006.03.028
    [15] 刘琪, 谷巍, 杨兵, 等. 基于ITS2序列的滨海白首乌及其近缘种DNA分子鉴定[J]. 中草药, 2018, 49(24):5901-5909. doi:  10.7501/j.issn.0253-2670.2018.24.025
  • [1] 葛鹏程, 苏日古嘎, 任天舒, 党大胜.  硫酸黏菌素联合头孢哌酮舒巴坦治疗泛耐药鲍曼不动杆菌肺内感染的疗效分析 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202404093
    [2] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2025, 43(4): 185-189. doi: 10.12206/j.issn.2097-2024.202401072
    [3] 詹济华, 颜滢.  低蛋白血症对头孢哌酮血药浓度的影响 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202309040
    [4] 舒飞, 孙蕊, 宋凯, 张元林, 闫家铭, 舒丽芯.  粉-液双室袋产品的综合评价 . 药学实践与服务, 2025, 43(2): 92-96. doi: 10.12206/j.issn.2097-2024.202312009
    [5] 吴海韵, 杨甜, 张弛, 梁文仪, 苏娟.  气相色谱-离子迁移谱技术在中药研究中的应用进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202409007
    [6] 陈方剑, 赵娟娟, 叶侃倜, 孙煜昕, 刘继勇, 杨骏.  血通胶囊提取工艺优化及质量控制研究 . 药学实践与服务, 2025, 43(2): 82-86, 91. doi: 10.12206/j.issn.2097-2024.202409003
    [7] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [8] 高锦, 胡丹, 王习文, 余小翠, 王泽欣, 刘晶, 祝雨薇, 马紫辉, 徐君伟, 高青, 洪小栩.  滴眼液中抑菌剂硫柳汞的HPLC含量测定方法研究 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202404059
    [9] 余小翠, 王习文, 张贵英, 徐君伟, 祝雨薇, 胡丹.  麝香接骨胶囊的HPLC特征图谱的研究及7种成分含量测定 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202307059
    [10] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
    [11] 戴菲菲, 傅翔, 陈琼年, 俞苏纯.  上海某二级医院革兰阴性菌流行特征的回顾性分析 . 药学实践与服务, 2024, 42(12): 528-532. doi: 10.12206/j.issn.2097-2024.202305005
    [12] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(7): 278-284. doi: 10.12206/j.issn.2097-2024.202306040
    [13] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [14] 毛泽玲, 文波.  大黄的HPLC指纹图谱及禁用农药的残留研究 . 药学实践与服务, 2024, 42(7): 297-304, 314. doi: 10.12206/j.issn.2097-2024.202310057
    [15] 陈方剑, 骆锦前, 王志君, 胡叶帅, 孙煜昕, 宋洪杰.  HPLC-MS/MS同时测定感冒安颗粒中5种黄酮成分的含量 . 药学实践与服务, 2024, 42(9): 402-406. doi: 10.12206/j.issn.2097-2024.202403030
    [16] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [17] 李丹, 戴贤春, 王芳珍, 陈奕含, 杨萍, 刘继勇.  HPLC-MS/MS测定当归六黄汤中4种不同成分的含量 . 药学实践与服务, 2024, 42(6): 248-252, 266. doi: 10.12206/j.issn.2097-2024.202305007
    [18] 张成中, 朱雪艳, 卜其涛, 王宏瑞, 黄宝康.  基于网络药理学与分子对接预测鸡骨草特征图谱研究 . 药学实践与服务, 2024, 42(8): 350-358. doi: 10.12206/j.issn.2097-2024.202303048
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  4038
  • HTML全文浏览量:  1415
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 修回日期:  2022-10-14
  • 网络出版日期:  2023-07-14
  • 刊出日期:  2023-06-25

基于特征图谱及苯乙酮类成分含量测定的白首乌种属差异研究

doi: 10.12206/j.issn.2097-2024.202207036
    作者简介:

    林美玉,硕士,高级实验师,研究方向:中药分析,Email:linmeiyu18@126.com

    通讯作者: 苏 娟,副教授,研究方向:中药化学和质量评价研究,Email:juansu_2008@126.com

摘要:   目的  建立不同产地白首乌药材的指纹图谱,并测定苯乙酮类成分含量,为不同品种白首乌药材的质量控制提供科学依据。  方法  采用HPLC-DAD法建立白首乌药材HPLC指纹图谱,同时对4种苯乙酮类成分进行含量测定。其中,色谱柱为Diamonsil C18(4.6 mm× 250 mm, 5 μm),流动相为甲醇-0.1%磷酸梯度洗脱,流速为1 ml/min,柱温为30 ℃,检测波长为260 nm(4-羟基苯乙酮、白首乌二苯酮、2',4'-二羟基苯乙酮)和280 nm(2',5'-二羟基苯乙酮)。  结果  泰山白首乌、滨海白首乌及隔山消中化学成分差异显著,隔山消中总苯乙酮类成分含量明显高于滨海白首乌和泰山白首乌。  结论  以苯乙酮类成分为评价指标,隔山消的总苯乙酮含量较高,可作为白首乌药材的优质资源。

English Abstract

孟祥庆, 李丽华, 王宏瑞, 贾丹, 贾敏. 基于网络药理学和反向分子对接的西红花抗肿瘤作用机制研究[J]. 药学实践与服务, 2023, 41(3): 160-167, 196. doi: 10.12206/j.issn.2097-2024.202206066
引用本文: 林美玉, 陈文华, 徐凌川, 韩婷, 苏娟, 张弛. 基于特征图谱及苯乙酮类成分含量测定的白首乌种属差异研究[J]. 药学实践与服务, 2023, 41(6): 366-371. doi: 10.12206/j.issn.2097-2024.202207036
MENG Xiangqing, LI Lihua, WANG Hongrui, JIA Dan, JIA Min. Anti-tumor mechanism study on saffron by network pharmacology and reverse molecular docking[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(3): 160-167, 196. doi: 10.12206/j.issn.2097-2024.202206066
Citation: LIN Meiyu, CHEN Wenhua, XU Lingchuan, HAN Ting, SU Juan, ZHANG Chi. Species differences of Baishouwu based on characteristic chromatogram and content determination of acetophenones[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(6): 366-371. doi: 10.12206/j.issn.2097-2024.202207036
  • 白首乌为萝藦科(Asclepiadaceae)鹅绒藤属(Cynanchum)植物泰山白首乌(戟叶牛皮消)C. bungei Decne.、隔山消(隔山牛皮消)C. wilfordii(Maxim.)Hemsl.及滨海白首乌(耳叶牛皮消)C. auriculatum Royle ex Wight.的块根[1-2],其主要生物活性成分为苯乙酮和C21-甾体皂苷类,具有抗肿瘤、抗炎、舒张心血管,保肝、降糖和神经保护等作用[3-13]。泰山白首乌块根作为正品传统中药白首乌曾收录于1977年版《中国药典》,为泰山四大名药之首,是山东道地药材[14]。2002年版《中国中药志》记载,白首乌还包含滨海白首乌C. auriculatum和隔山消C. wilfordii。滨海白首乌在2015年被国家卫计委批准为普通食品,隔山消于2008年被《韩国药典》收载[1-2]

    随着对白首乌生物活性研究的不断深入,其药用价值不断体现,市场需求也逐年攀升,但是白首乌药材市场存在以下问题:白首乌正品(泰山白首乌)为野生型、两年生,产量低,人工栽培极其困难,市场供应不足,因此有人将滨海白首乌和隔山消都作为白首乌正品销售,存在白首乌品种混淆的现象[15]。泰山白首乌与其近缘种滨海白首乌和隔山消的品质是否有差异,两种近缘种当作白首乌药材应用是否合理,针对这些问题,本研究收集25批白首乌类药材,建立不同产地白首乌的HPLC指纹图谱,运用HPLC指纹图谱进行质量评价。同时对不同批次的白首乌中4种苯乙酮类成分进行含量测定,结构式见图1,从而为不同品种白首乌药材的品质评价提供理论依据。

    图  1  白首乌中4种苯乙酮类成分结构式

    • LC-20AD高效液相色谱仪(岛津,四元梯度系统);色谱柱Diamonsil C18柱(4.6 mm× 250 mm, 5 μm);AG285型电子分析天平(瑞士Mettler-Toledo公司)。

      4-羟基苯乙酮(CAS:99-93-4,纯度≥98%)、2',4'-二羟基苯乙酮(CAS:89-84-9,纯度≥98%)、2',5'-二羟基苯乙酮(CAS490-78-8,纯度≥98%)均为国药集团提供,白首乌二苯酮为实验室自制(纯度≥98%)。

      白首乌药材样品均于2018年采集或购买自国内不同地区(表1),并经山东中医药大学药学院中药鉴定教研室徐凌川教授分别鉴定为泰山白首乌C. bungei Decne.、耳叶牛皮消C. auriculatum Royle ex Wight.和隔山消C. wilfordii (Maxim.) Hemsl.,密封存放于4 ℃冰箱。

      表 1  25批白首乌样品来源

      样品产地物种类型
      S1山东济南泰山白首乌栽培(两年)
      S2山东临沂泰山白首乌栽培(两年)
      S3山东泰安泰山白首乌栽培(一年)
      S4山东临沂隔山消栽培(两年)
      S5四川巴蜀滨海白首乌饮片
      S6湖南湘西滨海白首乌野生
      S7四川成都滨海白首乌饮片
      S8湖南张家界滨海白首乌饮片
      S9广东广州滨海白首乌饮片
      S10山东济南隔山消栽培(两年)
      S11安徽阜阳滨海白首乌饮片
      S12四川遂宁滨海白首乌饮片
      S13安徽亳州滨海白首乌饮片
      S14江苏南京滨海白首乌饮片
      S15广西玉林滨海白首乌饮片
      S16江苏徐州滨海白首乌饮片
      S17贵州毕节滨海白首乌饮片
      S18江西南昌滨海白首乌饮片
      S19江苏滨海滨海白首乌饮片
      S20云南昆明滨海白首乌饮片
      S21云南大理滨海白首乌饮片
      S22安徽大别山隔山消野生
      S23四川广安隔山消野生
      S24陕西汉中隔山消野生
      S25河北安国滨海白首乌饮片
    • 岛津LC-20AD高效液相色谱仪,Diamonsil C18 (4.6 mm×250 mm, 5 μm);流动相为甲醇-0.1%磷酸水溶液梯度洗脱(0~7 min,15%甲醇; 7~18 min,15%~24%甲醇;18~27 min,24%甲醇;27~32 min,24%~30%甲醇;32~40 min,30%甲醇;40~45 min,30%~15%甲醇),流速为1 ml/min,柱温为30 ℃,检测波长为260 nm(4-羟基苯乙酮、白首乌二苯酮、2',4'-二羟基苯乙酮)和280 nm(2',5'-二羟基苯乙酮),进样量为10 μl。

    • 精确称取标准品4-羟基苯乙酮156.12 mg、2',5'-二羟基苯乙酮162.08 mg、白首乌二苯酮98.02 mg和2',4'-二羟基苯乙酮133.45 mg,置于1 000 ml容量瓶中,用甲醇溶解并稀释至刻度线,摇匀,制得混合对照品储备液。精密量取混合对照品储备液适量,用甲醇稀释10倍,得到4-羟基苯乙酮、2',5-'二羟基苯乙酮、白首乌二苯酮和2',4'-二羟基苯乙酮质量浓度分别为0.015 61、0.016 21、0.009 802、0.013 34 mg/ml的混合对照品溶液,过0.45 μm微孔滤膜作对照品溶液,置于4 ℃冰箱中备用。

    • 称取白首乌样品粉末(过五号筛)约2.0 g,精密称定,置于50 ml具塞锥形瓶中,精密加入甲醇20.0 ml,密塞,称定重量,超声处理30 min,放冷,再称定重量,用甲醇补足超声过程中损失的重量,摇匀,滤过,再取续滤液,过0.45 μm微孔滤膜,即得。

    • 取25批白首乌样品,分别按实验方法制备供试品溶液,按“1.2”项色谱条件进行测定,得到25个样品的HPLC指纹叠加图谱及10个共有峰,并对指纹图谱中的4种苯乙酮类成分进行归属确认。其中,对4-羟基苯乙酮(保留时间19.531 min)、2',5'-二羟基苯乙酮(保留时间24.773 min)、白首乌二苯酮(保留时间26.455 min)和2',4'-二羟基苯乙酮(保留时间30.768 min)进行了指认,白首乌指纹图谱、对照图谱及混合对照品图谱如图2所示。

      图  2  白首乌HPLC色谱图

      本研究采用国家药典委员会“中药色谱指纹图谱相似度评价系统”(2012 A版)对25批白首乌样品的HPLC指纹图谱进行数据分析处理,运用多点校正法对其指纹图谱进行相似度评价,选取S16作为参照图谱,设置“时间窗宽度”为0.6 min,以平均数的方法生成白首乌共有模式的指纹对照图谱。在相似度评价中,25批白首乌样品除了S1(产地山东济南)、S2(产地山东临沂)、S3(产地山东泰安)之外,其余相似度均在0.823~0.980之间。故可以通过相似度分析初步将S1、S2、S3这3个批次的白首乌样品归为一类,从色谱图上可以看出其某些成分含量较低,与其他产地的白首乌差距明显,结果显示均为泰山白首乌。研究结果表明,可以明显将以上3个批次的泰山白首乌与其他2个种白首乌(滨海白首乌和隔山消)区分为2大类,说明泰山白首乌与其它白首乌品种(滨海白首乌和隔山消)的化学成分差距显著。

      相似度分析可以根据化学特征峰差异明显地区分泰山白首乌,但是滨海白首乌和隔山消不易区分。因此,将其他22批次白首乌样品的10个特征峰面积组成数据矩阵,导入SPSS 20.0统计软件,采用组间联接法以及欧氏距离对指纹图谱进行聚类分析,结果如图3。结果表明,化学距离为2.5,可以将22个样品分为2类,第Ⅰ类的6组均为隔山消,第Ⅱ类的16组均为滨海白首乌。聚类分析结果表明,隔山消和滨海白首乌化学成分含量差异明显。

      图  3  22批白首乌样品的化学聚类分析

      为了评价22批次样品所有成分的样品分辨能力,运用SIMCA 14.1 分析软件对其进行主成分分析,结果见图4。由PCA图可以看出,S9、S13~S21、S25聚为一类,S5、S7、S8、S12聚为一类,S10、S22、S23、S24聚为一类,与聚类分析的结果基本一致,样品之间的离散程度较大,表明样品差异性较大。

      图  4  22批白首乌PCA图

    • 精密吸取混合对照品溶液1、2、4、8、16、32 μl,分别注入高效液相色谱仪,在“1.2”项实验色谱条件下,重复进样3次,测定4-羟基苯乙酮、2',5'-二羟基苯乙酮、白首乌二苯酮和2',4'-二羟基苯乙酮的峰面积,对结果进行线性回归分析,以各对照品浓度(X, μg)对峰面积(Y)绘制各标准曲线。线性关系考察结果见表2

      表 2  线性关系考察结果

      成分回归方程R2线性范围(μg)
      4-羟基苯乙酮Y=47 109X-22 8680.999 90.015 61-0.499 6
      2',5'二羟基苯乙酮Y =23 028X-12 3410.999 80.016 21-0.518 7
      白首乌二苯酮Y=15 075X-7 940.10.999 80.009 802-0.313 7
      2',4'二羟基苯乙酮Y=28 725X-12 8160.999 90.013 34-0.427 0
    • 按“1.2”项色谱条件对混合对照品溶液,重复进样6次,测定并计算4-羟基苯乙酮、2',5'-二羟基苯乙酮、白首乌二苯酮和2',4'-二羟基苯乙酮峰面积的RSD分别为1.35%、1.15%、1.27%和1.37%。

    • 取混合对照品溶液,室温放置,按“1.2”项色谱条件,分别在0 h、2 h、4 h、6 h、12 h和24 h进样,测定并计算得到RSD分别为0.99%、0.82%、0.92%和0.88%,RSD值均小于3%,结果表明供试品溶液在24 h稳定性良好。

    • 取同一批白首乌(S16)样品粉末6份,精密称定,按“1.3.2”项方法制备供试品溶液,按“1.2”项色谱条件测定,4-羟基苯乙酮、2',5'-二羟基苯乙酮、白首乌二苯酮和2',4'-二羟基苯乙酮峰面积的RSD分别为1.48%、1.84%、1.13%和2.01%,RSD值均小于3%,表明方法重复性良好。

    • 精密称取同一批次白首乌(S16)样品粉末6份,每份1.0 g,按1:1质量比分别加入适量的4-羟基苯乙酮、2',5'-二羟基苯乙酮、白首乌二苯酮和2',4'-二羟基苯乙酮对照品,按照样品溶液的配制方法制备供试品溶液,在“1.2”项色谱条件下,测定并计算得到平均加样回收率(n=6)分别为97.77%、99.15%、98.81%和96.77%,RSD分别为2.07%、1.57%、1.20%和1.19%,加样回收率结果见表3

      表 3  加样回收率实验结果

      成分加样量(m/g)样品含量(m/mg)加对照品量(m/mg)测得量(m/mg)回收率(%)平均回收率(%)RSD(%)
      4-羟基苯乙酮1.000 00.102 10.100 00.198 298.0797.772.07
      1.000 30.102 10.100 00.193 495.70
      1.000 60.102 20.100 00.204 8101.29
      1.000 20.102 10.100 00.193 695.79
      1.000 80.102 20.100 00.196 797.27
      1.000 90.102 20.100 00.199 398.57
      2',5'-二羟基苯乙酮1.000 00.087 30.090 00.179 3101.1199.151.57
      1.000 30.087 30.090 00.178 9100.90
      1.000 60.087 40.090 00.172 597.24
      1.000 20.087 30.090 00.174 998.64
      1.000 80.087 40.090 00.175 899.10
      1.000 90.087 40.090 00.173 797.91
      白首乌二苯酮1.000 00.742 10.750 01.487 299.6798.811.20
      1.000 30.742 30.750 01.459 197.77
      1.000 60.742 50.750 01.498 5100.40
      1.000 20.742 20.750 01.483 499.41
      1.000 80.742 70.750 01.452 997.33
      1.000 90.742 80.750 01.467 098.27
      2',4'-二羟基苯乙酮1.000 00.119 80.120 00.229 795.7996.771.19
      1.000 30.119 80.120 00.232 296.83
      1.000 60.119 90.120 00.236 298.46
      1.000 20.119 80.120 00.228 395.20
      1.000 80.119 90.120 00.231 996.67
      1.000 90.119 90.120 00.234 397.67
    • 取25个批次的白首乌各2.0 g,按照样品溶液的配制方法制备白首乌供试品溶液,进样后记录各色谱峰的峰面积,将所得数据代入各标准曲线回归方程计算其含量,结果如表4。不同批次白首乌中各化合物成分存在显著差异,总苯乙酮类成分的含量也不同。

      表 4  25批白首乌中苯乙酮类化学成分含量测定结果(n=3,mg/g)

      编号4-羟基
      苯乙酮
      2',5'-二羟
      基苯乙酮
      白首乌
      二苯酮
      2',4'-二羟
      基苯乙酮
      总苯乙酮
      类成分
      S10.274 80.071 80.137 60.529 8
      S20.470 90.045 40.344 70.384 01.432 3
      S30.069 50.015 40.077 60.196 7
      S40.497 50.311 12.808 60.683 74.373 9
      S50.380 50.044 20.696 70.218 31.397 9
      S60.679 30.065 31.781 40.360 82.955 1
      S70.277 10.064 50.890 90.338 91.598 0
      S80.290 40.020 40.650 60.240 41.247 7
      S90.070 80.059 60.595 70.086 90.858 2
      S100.364 50.155 52.171 70.402 23.115 2
      S110.202 00.132 11.697 60.264 52.328 4
      S120.210 40.034 21.192 00.211 91.676 6
      S130.114 50.084 21.011 40.127 61.372 0
      S140.095 00.070 60.703 30.110 31.028 3
      S150.061 50.041 70.482 90.067 40.701 4
      S160.102 10.087 30.742 10.119 81.066 0
      S170.067 60.026 80.522 40.121 50.804 0
      S180.088 80.067 50.867 20.105 91.160 1
      S190.084 30.048 80.705 20.112 00.966 7
      S200.064 20.052 60.742 40.083 50.955 2
      S210.072 60.048 30.424 00.068 00.648 6
      S220.209 00.113 22.710 90.401 73.469 3
      S230.212 90.118 32.683 90.410 03.456 4
      S240.392 70.099 82.466 80.383 33.359 6
      S250.110 50.092 31.023 10.161 41.400 3
      注:“−”表示含量很低,超出线性范围。

      泰山白首乌历来被认为是白首乌的正品,而隔山消和滨海白首乌尽管也用作白首乌,但仍被认为是泰山白首乌的近缘品种。本研究发现,隔山消中总苯乙酮类成分的含量最高,滨海白首乌次之,泰山白首乌最低,总苯乙酮含量仅为隔山消的20%(图5)。栽培的隔山消中总苯乙酮含量与野生的相差不大,说明隔山消野生变家养驯化成功。

      图  5  不同物种白首乌中苯乙酮类化学成分含量

      滨海白首乌是目前流通的主流品种,江苏滨海、湖南、安徽、四川等地均有栽培,含量差异不大,然而野生的滨海白首乌总苯乙酮含量显著高于栽培品,说明该品种的种植存在着改良的空间,可以从种植环境、栽培技术等方面予以改进。

    • 本研究通过建立白首乌指纹图谱来评价白首乌药材的品质,对25批次不同白首乌的4种苯乙酮类指标性成分进行含量测定分析,并对其方法学进行考察。HPLC指纹图谱中相似度和聚类分析研究表明,泰山白首乌、滨海白首乌及隔山消的化学成分差异显著。HPLC含量测定分析发现,隔山消中总苯乙酮类的含量明显高于滨海白首乌和泰山白首乌。后续可以对3种白首乌的植物基源、化学成分、药理及毒理作用进行综合对比研究,为滨海白首乌和隔山消是否可以替代泰山白首乌作为白首乌正品药材应用,提供理论依据。

参考文献 (15)

目录

/

返回文章
返回