-
栀子是茜草科植物栀子(Gardenia jasminoides Ellis)的干燥成熟果实[1],主要产地为江西省抚州市、河南省唐河县等,中医药应用历史悠久,是一种药食两用资源。其具有清热祛火、缓解心烦、消肿止痛、化痰止咳等功效,用于热病心烦、湿热黄疸、淋证涩痛、血热吐衄、目赤肿痛、火毒疮疡,外治扭挫伤痛[1]。近年来,国内外众多学者对栀子做了大量的研究,证明了栀子中含有环烯醚萜、单萜、二萜、三萜、黄酮类、有机酸和挥发性化合物等丰富的化学成分[2-4],具有抑制神经系统[5]、保肝[6-7]、抗氧化[8]、降血糖[9-11]、利胆[12]、镇痛[13-14]等药理作用,其中主要的有效成分为环烯醚萜苷类化合物。
目前对于环烯醚萜苷类化合物的富集纯化主要以大孔吸附树脂为主[15-18],本课题组前期建立了一种用栀子果实制备总环烯醚萜苷的方法,并获得了国家发明专利授权(ZL200510026144.5)。此制备工艺得率高,成本低廉,为环烯醚萜苷类成分的研究及探索栀子的药效物质基础提供技术支持,对栀子及其有效部位的全面质量评价至关重要。
栀子环烯醚萜苷类有效部位的质量控制指标与栀子药材相比,其重点在于薄层色谱鉴别、检查及含量测定,其中检查项包括水分、重金属及有害元素。中药在贮藏及保管的过程中,水分含量是影响药材质量及其性状的重要因素。水分较高可导致药材霉变或虫蛀,为微生物和害虫提供良好的生长繁殖条件,从而进一步影响其有效部位的质量。重金属污染是中药在生产、运输、贮藏过程中可能会出现的污染类型,而中药成分中的重金属污染主要包括铜、汞、砷、镉、铅等。现代科学表明,残留的重金属能够与人体中的酶蛋白牢固结合,对组织细胞的功能、结构产生不同程度的破坏。而用栀子果实制备总环烯醚萜苷时,有机化合物根据分子量大小可以经溶剂洗脱分开而达到除杂的目的,从而减少栀子有效部位中的重金属元素残留量。本研究采用大孔吸附树脂法制备栀子有效部位,选用电感耦合等离子体质谱法(ICP-MS)对栀子及其有效部位中残留的重金属元素进行测定,旨在为临床用药提供科学依据。
目前,总环烯醚萜苷的质量控制方法中仅以紫外分光光度法测定其含量[19],缺少针对总环烯醚萜苷整体的质量控制标准,故本研究在栀子药材的质量控制基础上建立了栀子有效部位的质量控制标准。
-
称取栀子粉末、栀子有效部位粉末和栀子对照药材粉末适量,参照《中国药典》(2020年版)一部栀子鉴别项下薄层色谱法,制备得到浓度分别为0.1004、0.1006、0.1012 g/ml的栀子和栀子有效部位供试品溶液以及栀子对照药材溶液。再取栀子苷对照品,以乙醇为溶剂制成4 mg/ml的对照品溶液。吸取上述溶液各3 μl分别点于同一硅胶G薄层板上,以乙酸乙酯-甲酸-丙酮-水(5∶1∶5∶1)为展开剂展开,取出,晾干;喷以10%硫酸乙醇溶液,于110 ℃加热使其显色,直至斑点显色清晰。栀子及其有效部位供试品色谱中,在与栀子对照品和栀子对照药材色谱相应的位置上显示相同的特征斑点(见图1)。
-
参照《中国药典》(2020年版)四部通则0832水分测定法第二法进行测定。测定栀子含水量为8.4%,符合《中国药典》(2020年版)一部栀子项下对水分的规定。栀子有效部位的含水量为3.2%。
-
参照《中国药典》(2020年版)四部通则2302总灰分测定法进行测定。测定总灰分为5.4%,符合《中国药典》(2020年版)一部栀子项下对总灰分的规定。
-
ICP-MS仪器主要参数设定见表1。
表 1 ICP-MS仪器主要参数
参数 参数设定 参数 参数设定 高频功率 1.20 kW 等离子体气流速 8.0 L/min 辅助气流速 1.10 L/min 载气流速 0.70 L/min 矩管类型 Mini矩管 雾化器 同心雾化器 雾化室 旋流 雾化室温度 5 ℃ 采样深度 5.0 mm 高频频率 27.12 MHz 碰撞气体 He 碰撞气流速 6 ml/min 池电压 −21 V 能量过滤器电压 7.0 V -
取栀子药材粗粉和栀子有效部位粉末各0.5 g,于60 ℃干燥2 h,加入硝酸8 ml,置于耐压耐高温微波消解罐中。0~10 min内温度从室温升至120 ℃,10~20 min从120 ℃升至180 ℃,于180 ℃保持20 min,最后从180 ℃降至60 ℃,按照此消解条件进行消解。消解完全后,待消解液冷却至60 ℃以下时,移出消解罐,将消解液转移至50 ml量瓶中,用适量水将消解罐洗涤3次,洗涤液合并于量瓶中,加入金标准溶液200 μl,以水为溶剂稀释至刻度,摇匀,即得。
-
精密吸取各标准储备液,以10%硝酸为溶剂配制成各元素相应质量浓度的混合系列溶液。其中,铅:0、1、5、10、20 ng/ml;镉:0、0.5、2.5、5、10 ng/ml;砷:0、1、5、10、20 ng/ml;铜:0、50、100、200、500 ng/ml;汞:0、0.2、0.5、1、2、5 ng/ml。以系列标准液浓度(X,ng/ml)为横坐标,元素响应值(Y)为纵坐标绘制标准曲线,得到各元素线性关系见表2。
表 2 5种元素线性关系考察
元素 回归方程 r 线性范围
(ng/ml)方法检出限
(mg/kg)As Y=10.01048X+
0.2398920.9999 0~20 9.5×10−5 Cd Y=7.470893X+
0.1560680.9999 0~10 3.3×10−5 Cu Y=31.18023X−
44.787350.9999 0~500 3.5×10−4 Hg Y=3.455492X+
0.0173241.000 0~5 1.3×10−3 Pb Y=20.95865X+
3.0680300.9998 0~20 4.9×10−5 -
取含砷 1 ng/ml、镉 0.5 ng/ml、铜 50 g/ml、汞 0.2 ng/ml、铅1 ng/ml的混合标准溶液,在设定的仪器工作条件下重复测定5次,各测定元素的RSD值分别为0.53%、0.82%、0.32%、0.57%、0.40%,表明仪器精密度良好。
-
取栀子药材、栀子有效部位供试品粉末分别按 “2.4.2”项下方法操作,平行制备5份,在相同的仪器工作条件下进行分析,所测5种元素的RSD为0.30%~4.67%,表明该方法重复性良好。
-
各取上述栀子以及栀子有效部位的供试品溶液,分别于放置0、2、4、6、8 h后进行测定,计算两种供试品溶液中5种重金属元素的含量,结果各元素含量的RSD在0.15%~2.64%之间(n=5),表明两种供试品溶液中各测定元素在8 h内的稳定性良好。
-
精密称取已知含量的栀子以及栀子有效部位供试品各3份,分别精密加入各测定元素相应的对照品溶液适量,按“2.4.2”项下步骤操作,测定,计算各测定元素的回收率及RSD值,结果见表3。
表 3 栀子及栀子有效部位中重金属及有害元素加样回收率试验结果
测定元素 栀子 栀子有效部位 样品含量
(ng)加入量
(ng)测得量
(ng)平均回收率
(%)RSD
(%)样品含量
(ng)加入量
(ng)测得量
(ng)平均回收率
(%)RSD
(%)As 77.50 50 133.7 112 0.51 195.0 250 453.2 103 0.56 Cd 33.65 25 58.33 99 1.17 6.050 25 30.53 98 0.12 Cu 3740 5000 8650 98 0.00 1465 5000 6433 99 0.58 Hg 4.265 10 14.90 106 1.41 1.135 10 11.68 105 1.52 Pb 276.0 250 526.7 100 1.15 179.0 250 435.3 103 0.69 -
按“2.4.2”项下方法制备供试品溶液,按“2.4.1”项下工作条件测定两种样品,每份样品平行测定3次,结果见表4。
表 4 栀子及栀子有效部位中5种重金属元素的含量(mg/kg)
样品 As Cd Cu Hg Pb 栀子 0.156 0.0670 7.28 0.00844 0.553 栀子有效部位 0.390 0.0120 2.83 0.00179 0.361 -
色谱柱:Ultimate XB-C18(4.6 mm×150 mm,5 μm);流动相:乙腈-0.5%醋酸水(15:85);流速:1.0 ml/min;柱温:30 ℃;检测波长:238 nm;进样量:10 μl。
-
精密称取栀子苷对照品25.21 mg置于25 ml量瓶中,加甲醇制成含栀子苷1.008 mg/ml的溶液,精密量取0.3 ml至10 ml量瓶中,以甲醇为溶剂稀释至刻度,制成含栀子苷30.24 μg/ml的溶液。
-
分别精密称取栀子样品粉末(过四号筛)约0.1035g、栀子有效部位粉末13.36 mg,置于具塞锥形瓶中,精密加入25 ml甲醇,称定重量并记录,超声20 min后放冷,再次称定重量,用甲醇补足减失的重量,摇匀,滤过。精密量取续滤液10 ml,置于25 ml量瓶中,用甲醇加至刻度,摇匀,即得。
-
将空白对照溶液(甲醇)、栀子苷对照品溶液、栀子供试品溶液和栀子有效部位供试品溶液,按照上述色谱条件进样,得到色谱图(图2),栀子药材中其余成分及空白溶液对栀子苷的测定无影响。
-
将1.008 mg/ml的栀子苷对照品溶液用甲醇稀释制成322.6、161.3、80.64、40.32、20.16 μg/ml的系列溶液,分别吸取10 μl注入液相色谱仪,以对照品浓度(X,μg/ml)为横坐标,峰面积(Y)为纵坐标绘制标准曲线,得到标准曲线方程为Y=15860X+22543,r=0.9999,表明栀子苷在20.16~322.6 μg/ml的浓度范围内具有良好的线性关系。
-
吸取浓度为80.64 μg/ml的对照品溶液,在上述色谱条件下连续进样6次,结果栀子苷峰面积的RSD值为1.86%,表明仪器精密度良好。
-
取同一批栀子药材以及栀子有效部位粉末各6份,分别按上述供试品制备方法制备供试品溶液,按照上述色谱条件进样分析,记录峰面积。计算栀子药材及有效部位中栀子苷的含量,RSD分别为2.38%、2.60%,表明该方法重复性良好。
-
取栀子药材、栀子有效部位的供试品溶液,于制备后0、2、4、6、8 h分别按上述色谱条件进样测定。结果栀子苷峰面积的RSD分别为0.50%、0.81%。结果表明两种供试品溶液在室温下放置8 h稳定。
-
取栀子药材粉末约0.1 g,共6份,精密称定,分别置于具塞锥形瓶中,加入浓度为1 mg/ml的对照品溶液6 ml,精密加入甲醇19 ml,称定重量并记录,超声处理20 min,放冷,再次称定重量,用甲醇补足减失的重量,摇匀,滤过。精密量取续滤液10 ml,置25 ml量瓶中,加甲醇至刻度,摇匀,即得供试品溶液。按照上述色谱条件进样分析,结果见表5。
表 5 栀子苷加样回收率试验结果
编号 药材粉
末量(g)原有量
(mg)加入量
(mg)测得量
(mg)回收率
(%)平均回
收率(%)RSD
(%)1 0.0964 4.708 6.006 10.65 98.9 99.1 2.18 2 0.0951 4.645 5.994 10.80 102.7 3 0.0933 4.557 6.132 10.45 96.1 4 0.1005 4.908 5.994 10.86 99.3 5 0.0931 4.547 6.090 10.60 99.4 6 0.1006 4.913 6.072 10.87 98.1 -
取栀子及栀子有效部位粉末按“2.5.3”项下方法分别配制供试品溶液,并按上述色谱条件进行测定,每份样品平行测定3次,计算得栀子及其有效部位中栀子苷含量分别为5.71%、34.2%,结果见表6。
表 6 栀子药材及有效部位中栀子苷含量测定结果
种类 编号 称样量(mg) 含量(%) 平均(%) 栀子 1 100.7 5.76 5.71 2 100.5 5.87 3 100.5 5.51 栀子有效部位 1 13.60 33.5 34.2 2 13.40 34.7 3 13.57 34.4
Study on quality standard of Gardenia jasminoides and its effective parts
-
摘要:
目的 对栀子及其有效部位的质量标准进行研究。 方法 采用薄层色谱法(TLC)对栀子及其有效部位进行定性鉴别;采用电感耦合等离子体质谱法(ICP-MS)检查其重金属及有害元素;根据现行版《中国药典》中水分测定法对其进行水分检查;采用高效液相色谱法(HPLC)测定其中栀子苷的含量。 结果 TLC法能够对栀子及其有效部位进行鉴别。栀子及其有效部位的水分含量分别为8.4%、3.2%。同时测定栀子及其有效部位中5种元素的含量,砷、镉、铜、汞、铅分别在0~20、0~10、0~500、0~5、0~20 ng/ml范围内呈现良好的线性关系,各金属元素的方法检出限为3.3×10−5~1.3×10−3 mg/kg,精密度的RSD值为0.32%~0.82%,该方法的重复性较好,砷、镉、铜、汞、铅的加样回收率分别为103%~112%、98%~99%、98%~99%、105%~106%、100%~103%(n=3),各测定元素在8 h内的稳定性良好,5种元素的含量均在现行版《中国药典》限量范围内。采用高效液相色谱法同时测定栀子及其有效部位中栀子苷的含量,栀子苷标准曲线方程为Y=15860X+22543,r=0.9999,表明栀子苷在20.16~322.6 μg/ml范围内呈现良好的线性关系,精密度的RSD值为1.86%,两种供试品中栀子苷含量的RSD值分别为2.38%、2.60%,表明该测定方法的重复性良好,栀子药材的平均加样回收率为99.1%(n=6),两种供试品溶液在8 h内稳定性良好,栀子及其有效部位中栀子苷的含量分别为5.71%、34.2%。 结论 栀子有效部位的质量研究在栀子质量研究基础上开展,且结果符合要求,本实验所建立的方法能够实现同时对栀子及其有效部位的质量进行控制。 Abstract:Objective To study the quality standard of Gardenia jasminoides and its effective parts. Methods TLC was used to identify Gardenia jasminoides and its effective parts. The heavy metals, harmful elements, and moisture in Gardenia jasminoides and its effective parts were examined. The content of Gardenia jasminoides and its effective parts was determined by high performance liquid chromatography. Results TLC method could be used to identify Gardenia jasminoides and its effective parts. The moisture content of Gardenia jasminoides and its effective parts were 8.4% and 3.2%, respectively. ICP-MS was used to determine the contents of five elements in Gardenia jasminoides and its effective parts simultaneously. There was a good linear relationship between arsenic, cadmium, copper, mercury, and lead in the range of 0~20, 0~10, 0~500, 0~5 and 0~20 ng/ml, respectively; The method detection limit of each metal element was 3.3×10−5~1.3×10−3 mg/kg. The relative standard deviation (RSD) of precision was 0.32%~0.82%. RSD values of each element content showed that the method had good repeatability. And the recoveries of arsenic, cadmium, copper, mercury, and lead were 103%~112%, 98%~99%, 98%~99%, 105%~106% and 100%~103%, respectively (n=3). The stability of each element was good within 8 h. The contents of the five elements were within the limits of the current edition of Chinese Pharmacopoeia. The standard curve equation of gardenia was Y=15860X+22543, r=0.9999, indicating that there was a good linear relationship of gardenia in the range of 20.16~322.6 μg/ml. The RSD of precision was 1.86%. RSD of the two samples were 2.38% and 2.60%, respectively, indicated that the method had good repeatability. The average recovery of Gardenia was 99.1% (n=6). The stability of the two solutions was good within 8 h. The contents of gardenia and its effective parts were 5.71% and 34.2%, respectively. Conclusion The research on the quality of Gardenia jasminoides effective parts was carried out based on the research on the quality of Gardenia jasminoides, and the results met the requirements. Therefore, the method established in this experiment could control the quality of Gardenia jasminoides and its effective parts simultaneously. -
Key words:
- gardenia /
- effective parts of Gardenia jasminoides /
- TLC /
- HPLC /
- geniposide /
- quality standards
-
表 1 ICP-MS仪器主要参数
参数 参数设定 参数 参数设定 高频功率 1.20 kW 等离子体气流速 8.0 L/min 辅助气流速 1.10 L/min 载气流速 0.70 L/min 矩管类型 Mini矩管 雾化器 同心雾化器 雾化室 旋流 雾化室温度 5 ℃ 采样深度 5.0 mm 高频频率 27.12 MHz 碰撞气体 He 碰撞气流速 6 ml/min 池电压 −21 V 能量过滤器电压 7.0 V 表 2 5种元素线性关系考察
元素 回归方程 r 线性范围
(ng/ml)方法检出限
(mg/kg)As Y=10.01048X+
0.2398920.9999 0~20 9.5×10−5 Cd Y=7.470893X+
0.1560680.9999 0~10 3.3×10−5 Cu Y=31.18023X−
44.787350.9999 0~500 3.5×10−4 Hg Y=3.455492X+
0.0173241.000 0~5 1.3×10−3 Pb Y=20.95865X+
3.0680300.9998 0~20 4.9×10−5 表 3 栀子及栀子有效部位中重金属及有害元素加样回收率试验结果
测定元素 栀子 栀子有效部位 样品含量
(ng)加入量
(ng)测得量
(ng)平均回收率
(%)RSD
(%)样品含量
(ng)加入量
(ng)测得量
(ng)平均回收率
(%)RSD
(%)As 77.50 50 133.7 112 0.51 195.0 250 453.2 103 0.56 Cd 33.65 25 58.33 99 1.17 6.050 25 30.53 98 0.12 Cu 3740 5000 8650 98 0.00 1465 5000 6433 99 0.58 Hg 4.265 10 14.90 106 1.41 1.135 10 11.68 105 1.52 Pb 276.0 250 526.7 100 1.15 179.0 250 435.3 103 0.69 表 4 栀子及栀子有效部位中5种重金属元素的含量(mg/kg)
样品 As Cd Cu Hg Pb 栀子 0.156 0.0670 7.28 0.00844 0.553 栀子有效部位 0.390 0.0120 2.83 0.00179 0.361 表 5 栀子苷加样回收率试验结果
编号 药材粉
末量(g)原有量
(mg)加入量
(mg)测得量
(mg)回收率
(%)平均回
收率(%)RSD
(%)1 0.0964 4.708 6.006 10.65 98.9 99.1 2.18 2 0.0951 4.645 5.994 10.80 102.7 3 0.0933 4.557 6.132 10.45 96.1 4 0.1005 4.908 5.994 10.86 99.3 5 0.0931 4.547 6.090 10.60 99.4 6 0.1006 4.913 6.072 10.87 98.1 表 6 栀子药材及有效部位中栀子苷含量测定结果
种类 编号 称样量(mg) 含量(%) 平均(%) 栀子 1 100.7 5.76 5.71 2 100.5 5.87 3 100.5 5.51 栀子有效部位 1 13.60 33.5 34.2 2 13.40 34.7 3 13.57 34.4 -
[1] 国家药典委员会. 中华人民共和国药典(一部)2020年版[S]. 北京: 中国医药科技出版社, 2020. [2] 马金凤. 中药栀子主要化学成分研究[D]. 广州: 暨南大学, 2019. [3] 韩燕. 栀子豉汤的药效物质基础研究[D]. 福州: 福建中医药大学, 2015. [4] 曹亚楠. 栀子有效成分提取及其抑制LDL氧化修饰的研究[D]. 天津: 天津科技大学, 2020. [5] 张陆勇, 季慧芳, 曹于平, 等. 栀子西红花总苷对神经、心血管及呼吸系统的影响[J]. 中国药科大学学报, 2000, 31(6):455-457. doi: 10.3321/j.issn:1000-5048.2000.06.015 [6] 尚新涛, 张琳, 祖元刚, 等. 京尼平苷对CCl4诱导的大鼠慢性肝损伤保护作用研究[J]. 中药药理与临床, 2012, 28(4):29-31. [7] 张立明. 京尼平甙和藏红花素对四氯化碳急性肝中毒小鼠的保护作用研究[D]. 成都: 中国科学院研究生院(成都生物研究所), 2005. [8] 杨超, 刘婧, 钟瑞, 等. 栀子有效部位的溃疡性结肠炎活性及其化学成分研究[J]. 中国药理学通报, 2021, 37(2):263-269. doi: 10.3969/j.issn.1001-1978.2021.02.021 [9] 谢文利, 李宏捷, 晋玉章. 京尼平苷的降血糖作用研究[J]. 武警医学院学报, 2008, 17(7):580-581. [10] 颜静恩, 李晚忱, 吕秋军, 等. 栀子苷的降糖作用和对PPARγ受体的激活[J]. 四川农业大学学报, 2007, 25(4):415-418. doi: 10.3969/j.issn.1000-2650.2007.04.010 [11] 黄洪林, 杨怀瑾, 刘立超, 等. 栀子降血糖作用的实验研究[J]. 中药新药与临床药理, 2006, 17(1):1-3. doi: 10.3321/j.issn:1003-9783.2006.01.001 [12] 孙旭群, 赵新民, 杨旭. 栀子苷利胆作用实验研究[J]. 安徽中医学院学报, 2004, 23(5):33-36. [13] 朱江, 蔡德海, 芮菁. 栀子的抗炎镇痛作用研究[J]. 中草药, 2000, 31(3):198-200. doi: 10.3321/j.issn:0253-2670.2000.03.020 [14] 赵维民, 季新泉, 叶庆华, 等. 栀子兰色素可能为栀子粉末外用抗炎消肿时的活性物质[J]. 天然产物研究与开发, 2000, 12(4):41-44. doi: 10.3969/j.issn.1001-6880.2000.04.008 [15] 杨然, 陆远, 郝昊, 等. 金银花环烯醚萜苷类化学成分和药理活性研究进展[J]. 中国中药杂志, 2021, 46(11):2746-2752. [16] 张冰冰, 欧则民, 严林, 等. 栀子总环烯醚萜和总西红花苷的提取纯化工艺考察[J]. 中国实验方剂学杂志, 2022, 28(11):156-163. doi: 10.13422/j.cnki.syfjx.20220153 [17] 鲁艳梅, 马趣环, 石晓峰, 等. 糙叶败酱总环烯醚萜苷的纯化工艺及抗炎活性研究[J]. 中国现代应用药学, 2021, 38(21):2675-2682. [18] 向雪滢, 杨建华, 胡君萍, 等. 新疆假龙胆的保肝活性部位环烯醚萜苷提取纯化工艺研究[J]. 西北药学杂志, 2019, 34(2):151-158. doi: 10.3969/j.issn.1004-2407.2019.02.003 [19] 周婷婷, 闻俊, 佟典承, 等. 栀子总环烯醚萜苷含量的紫外分光光度法测定[J]. 时珍国医国药, 2011, 22(2):273-275. doi: 10.3969/j.issn.1008-0805.2011.02.003