[1]
|
LINDAHL R. Aldehyde dehydrogenases and their role in carcinogenesis[J]. Crit Rev Biochem Mol Biol, 1992, 27(4-5):283-335. doi: 10.3109/10409239209082565 |
[2]
|
KOPPAKA V, THOMPSON D C, CHEN Y, et al. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application[J]. Pharmacol Rev, 2012, 64(3):520-539. doi: 10.1124/pr.111.005538 |
[3]
|
CHEN C H, FERREIRA J C B, GROSS E R, et al. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities[J]. Physiol Rev, 2014, 94(1):1-34. doi: 10.1152/physrev.00017.2013 |
[4]
|
YOSHIDA A, HSU L C, YASUNAMI M. Genetics of human alcohol-metabolizing enzymes[J]. Prog Nucleic Acid Res Mol Biol, 1991, 40:255-287. |
[5]
|
BAGNARDI V, ROTA M, BOTTERI E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis[J]. Br J Cancer, 2015, 112(3):580-593. doi: 10.1038/bjc.2014.579 |
[6]
|
CEDERBAUM A I. Alcohol metabolism[J]. Clin Liver Dis, 2012, 16(4):667-685. |
[7]
|
VAISHNAV R A, SINGH I N, MILLER D M, et al. Lipid peroxidation-derived reactive aldehydes directly and differentially impair spinal cord and brain mitochondrial function[J]. J Neurotrauma, 2010, 27(7):1311-1320. doi: 10.1089/neu.2009.1172 |
[8]
|
CARBONE D L, DOORN J A, KIEBLER Z, et al. Modification of heat shock protein 90 by 4-hydroxynonenal in a rat model of chronic alcoholic liver disease[J]. J Pharmacol Exp Ther, 2005, 315(1):8-15. doi: 10.1124/jpet.105.088088 |
[9]
|
LI H, BORINSKAYA S, YOSHIMURA K, et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant[J]. Ann Hum Genet, 2009, 73(3):335-345. doi: 10.1111/j.1469-1809.2009.00517.x |
[10]
|
GROSS E R, ZAMBELLI V O, SMALL B A, et al. A personalized medicine approach for Asian Americans with the aldehyde dehydrogenase 2*2 variant[J]. Annu Rev Pharmacol Toxicol, 2015, 55:107-127. doi: 10.1146/annurev-pharmtox-010814-124915 |
[11]
|
CHEN C H, SUN L H, MOCHLY-ROSEN D. Mitochondrial aldehyde dehydrogenase and cardiac diseases[J]. Cardiovasc Res, 2010, 88(1):51-57. doi: 10.1093/cvr/cvq192 |
[12]
|
CHEN C H, BUDAS G R, CHURCHILL E N, et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart[J]. Science, 2008, 321(5895):1493-1495. doi: 10.1126/science.1158554 |
[13]
|
RADOVANOVIC S, SAVIC-RADOJEVIC A, PLJESA-ERCEGOVAC M, et al. Markers of oxidative damage and antioxidant enzyme activities as predictors of morbidity and mortality in patients with chronic heart failure[J]. J Cardiac Fail, 2012, 18(6):493-501. doi: 10.1016/j.cardfail.2012.04.003 |
[14]
|
FU S H, ZHANG H F, YANG Z B, et al. Alda-1 reduces cerebral ischemia/reperfusion injury in rat through clearance of reactive aldehydes[J]. Naunyn-Schmiedeberg’s Arch Pharmacol, 2014, 387(1):87-94. doi: 10.1007/s00210-013-0922-8 |
[15]
|
STAERK L, SHERER J A, KO D, et al. Atrial fibrillation[J]. Circ Res, 2017, 120(9):1501-1517. doi: 10.1161/CIRCRESAHA.117.309732 |
[16]
|
JIN J Y, CHEN J Y, WANG Y P. Aldehyde dehydrogenase 2 and arrhythmogenesis[J]. Heart Rhythm, 2022, 19(9):1541-1547. doi: 10.1016/j.hrthm.2022.05.008 |
[17]
|
PANNETON W M, KUMAR V B, GAN Q, et al. The neuro-toxicity of DOPAL: behavioral and stereological evidence for its role in Parkinson disease pathogenesis[J]. PLoS One, 2010, 5(12):e15251. doi: 10.1371/journal.pone.0015251 |
[18]
|
WEY M C Y, FERNANDEZ E, MARTINEZ P A, et al. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson’s disease[J]. PLoS One, 2012, 7(2):e31522. doi: 10.1371/journal.pone.0031522 |
[19]
|
OHSAWA I, NISHIMAKI K, MURAKAMI Y, et al. Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity[J]. J Neurosci, 2008, 28(24):6239-6249. doi: 10.1523/JNEUROSCI.4956-07.2008 |
[20]
|
KIMURA M, YOKOYAMA A, HIGUCHI S. Aldehyde dehydrogenase-2 as a therapeutic target[J]. Expert Opin Ther Targets, 2019, 23(11):955-966. doi: 10.1080/14728222.2019.1690454 |
[21]
|
HYUN J, HAN J, LEE C B, et al. Pathophysiological aspects of alcohol metabolism in the liver[J]. Int J Mol Sci, 2021, 22(11):5717. doi: 10.3390/ijms22115717 |
[22]
|
YIN-CUI WU. The role of acetaldehyde dehydrogenase 2 in the pathogenesis of liver diseases[J]. Cell Signal, 2023, 102:110550. doi: 10.1016/j.cellsig.2022.110550 |
[23]
|
CHANG J S, HSIAO J R, CHEN C H. ALDH2 polymorphism and alcohol-related cancers in Asians: a public health perspective[J]. J Biomed Sci, 2017, 24(1):19. doi: 10.1186/s12929-017-0327-y |
[24]
|
HODSKINSON M R, BOLNER A, SATO K, et al. Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms[J]. Nature, 2020, 579(7800):603-608. doi: 10.1038/s41586-020-2059-5 |
[25]
|
MA B, LIU Z Q, XU H, et al. Molecular characterization and clinical relevance of ALDH2 in human cancers[J]. Front Med (Lausanne), 2022, 8:832605. |
[26]
|
ZHANG H, FU L. The role of ALDH2 in tumorigenesis and tumor progression: targeting ALDH2 as a potential cancer treatment[J]. Acta Pharm Sin B, 2021, 11(6):1400-1411. doi: 10.1016/j.apsb.2021.02.008 |
[27]
|
HADJ HASSINE I. Covid-19 vaccines and variants of concern: a review[J]. Rev Med Virol, 2022, 32(4):e2313. doi: 10.1002/rmv.2313 |
[28]
|
MATSUMOTO A, HARA M, ASHENAGAR M S, et al. Variant allele of ALDH2, rs671, associates with attenuated post-vaccination response in anti-SARS-CoV-2 spike protein IgG: a prospective study in the Japanese general population[J]. Vaccines, 2022, 10(7):1035. doi: 10.3390/vaccines10071035 |
[29]
|
XIE Y, HOU W, SONG X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3):369-379. doi: 10.1038/cdd.2015.158 |
[30]
|
CAO Z Z, QIN H Q, HUANG Y H, et al. Crosstalk of pyroptosis, ferroptosis, and mitochondrial aldehyde dehydrogenase 2-related mechanisms in sepsis-induced lung injury in a mouse model[J]. Bioengineered, 2022, 13(3):4810-4820. doi: 10.1080/21655979.2022.2033381 |
[31]
|
WU H B, XU S X, DIAO M Y, et al. Alda-1 treatment alleviates lung injury after cardiac arrest and resuscitation in swine[J]. Shock, 2022, 58(5):464-469. doi: 10.1097/SHK.0000000000002003 |
[32]
|
YU Q, GAO J B, SHAO X B, et al. The effects of Alda-1 treatment on renal and intestinal injuries after cardiopulmonary resuscitation in pigs[J]. Front Med (Lausanne), 2022, 9:892472. |
[33]
|
ZHU Z Y, LIU Y D, GONG Y, et al. Mitochondrial aldehyde dehydrogenase (ALDH2) rescues cardiac contractile dysfunction in an APP/PS1 murine model of Alzheimer’s disease via inhibition of ACSL4-dependent ferroptosis[J]. Acta Pharmacol Sin, 2022, 43(1):39-49. doi: 10.1038/s41401-021-00635-2 |
[34]
|
LI J, CAO F, YIN H L, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2):88. doi: 10.1038/s41419-020-2298-2 |
[35]
|
PEREZ-MILLER S, YOUNUS H, VANAM R, et al. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant[J]. Nat Struct Mol Biol, 2010, 17(2):159-164. doi: 10.1038/nsmb.1737 |
[36]
|
HU J, TIAN W, ZHOU R L, et al. Design, synthesis, and biological evaluation of new ALDH2 activators[J]. J Saudi Chem Soc, 2019, 23(3):255-262. doi: 10.1016/j.jscs.2018.07.001 |
[37]
|
CHENG M C, LO W C, CHANG Y W, et al. Design, synthesis and the structure-activity relationship of agonists targeting on the ALDH2 catalytic tunnel[J]. Bioorg Chem, 2020, 104:104166. doi: 10.1016/j.bioorg.2020.104166 |
[38]
|
LEE H L, HEE S W, HSUAN C F, et al. A novel ALDH2 acti-vator AD-9308 improves diastolic and systolic myocardial functions in streptozotocin-induced diabetic mice[J]. Antioxidants (Basel), 2021, 10(3):450. doi: 10.3390/antiox10030450 |
[39]
|
CHEN L, Wu Y T, GU X Y, et al. Magnolol, a natural aldehyde dehydrogenase-2 agonist, inhibits the proliferation and collagen synthesis of cardiac fibroblasts[J]. Bioorg Med Chem Lett, 2021, 43:128045. doi: 10.1016/j.bmcl.2021.128045 |
[40]
|
TIAN W, GUO J, ZHANG Q, et al. The discovery of novel small molecule allosteric activators of aldehyde dehydrogenase 2[J]. Eur J Med Chem, 2021, 212:113119. doi: 10.1016/j.ejmech.2020.113119 |