-
中风是人类死亡的主要原因之一,全世界范围内中风的发病率、死亡率和致残率均较高。缺血性脑卒中(IS)是常见的一种中风,也是导致人类死亡和残疾的最常见因素[1]。目前溶栓是IS的首选治疗方法,其中药物溶栓最为有效,但往往具有黄金治疗时间,可能约3~8%的患者才有资格使用药物溶栓治疗[2-3]。因此,需要针对IS开发新的药物以提高溶栓治疗的疗效。咪达唑仑是一种有效的短效苯二氮卓类药物,具有抗焦虑、镇静和催眠作用[4]。YU等[5]研究表明咪达唑仑通过抗凋亡机制减少细胞毒性和凋亡,从而保护缺血环境下的神经元,具有治疗中风的潜在能力,但其具体机制仍需探索。线粒体是细胞的能量来源,在决定细胞死亡中起着关键作用,PTEN诱导假定激酶1(PINK1)/E3泛素连接酶(PARKIN)信号通路在线粒体吞噬和线粒体运动中起关键作用,已有研究显示PINK1/PARKIN介导的线粒体自噬在中风后的神经元和组织损伤中起主要作用,能够防止IS后神经元凋亡[6-7]。动脉阻塞法建立IS动物模型是最接近模拟人类IS的模型之一[8-10]。本研究通过动脉阻塞法建立IS大鼠,探讨咪达唑仑是否通过调节PINK1/PARKIN信号通路影响IS大鼠神经元损伤,从而为咪达唑仑治疗脑中风提供理论依据。
-
健康无特定病原体级成年雄性SD大鼠(6周龄,200~230 g)在室温和光照/黑暗(12 h/12 h)交替循环的条件下喂养,并自由获得食物和水。大鼠由郑州大学(河南省实验动物中心)提供,许可证号:SCXK(豫)2022−0001,本研究实验符合《中华人民共和国实验动物指南》规定,并获得动物伦理委员会批准。
-
咪达唑仑注射液(国药准字H20031037,批号20211120)。
-
美国Selleck Chemicals公司提供自噬抑制剂(3-MA);上海天能科技有限公司提供ECL化学发光试剂盒;Abcam公司提供PINK1、ARKIN、微管相关蛋白1轻链3(LC3)及P62一抗;上海生物工程有限公司提供线粒体提取试剂盒、TUNEL试剂盒;北京Solarbio公司提供苏木精-伊红(HE)染色液;美国Bioteke公司提供二辛可宁酸(BCA)蛋白定量试剂盒。
-
美国Bio-Rad公司提供凝胶电泳、转移装置;日本JEOL电子公司提供透射电子显微镜(1400PLUS型)。
-
大鼠适应性喂养一周后,通过中动脉阻塞法建立IS大鼠模型[11]:将麻醉的大鼠置于立体定位框架中,颈部正中央做一切口,手术分离右侧颈总动脉、颈内动脉和颈外动脉,结扎颈外动脉,然后将线栓穿过颈外动脉残端插入颈内动脉,在离插入点约18至22 mm处闭塞大脑中动脉,固定2 h后,抽出线栓并缝合伤口。当大鼠出现自主向左旋转的行为,记为IS大鼠造模成功,术后死亡大鼠给予相应补充。将造模成功的大鼠随机分为IS组、药物低剂量(药物-L)、药物中剂量(药物-M)、药物高剂量(药物-H)组、药物-H+3-MA组,并以仅进行分离血管的正常大鼠为假手术组,其中药物-L组、药物-M组、药物-H组根据参考文献[12]和前期预实验结果分别以30、60、90 mg/kg咪达唑仑进行腹腔注射给药干预,同时给予生理盐水干预;药物-H+3-MA组在给予90 mg/kg咪达唑仑腹腔注射给药的同时,以30 mg/kg 3-MA灌胃给药干预[13];其余各组分别以等体积的生理盐水腹腔注射、灌胃干预,每日一次,连续两周。
-
以有经验的测试者根据Longa方法采用双盲设计评估神经功能缺损评分,神经功能缺损评分中无神经功能缺损症状,活动正常,记为0分;大鼠左前肢不能完全伸直,记为1分;大鼠爬行时转向对侧,记为2分;自发的向左转圈或行走,记为3分;大鼠无法行走,失去知觉,记为4分。
-
神经功能评分结束后,随机取5只大鼠麻醉,用0.9%生理盐水经心脏灌注,然后用4%多聚甲醛灌注,直到四肢僵硬,立即取出大脑,并在4 ℃下经固定剂固定部分脑组织24 h。将脑组织包埋在石蜡中,并切成连续的冠状切片,然后将切片脱蜡、再水合并用苏木精伊红染色,于显微镜下观察并拍照。
-
取1.2.3中脑组织石蜡片,脱蜡后按照试剂盒要求检测TUNEL阳性细胞,并计算凋亡率,其中棕黄色或棕褐色颗粒为阳性细胞。
-
取部分脑组织皮质区,并以戊二醛、四氧化锇固定,经浸透、包埋、聚合后制备超薄切片,透射电镜下观察皮质区自噬小体的变化。
-
利用线粒体分离试剂盒提取剩余8只大鼠脑组织线粒体,在含有蛋白酶抑制剂和磷酸酶抑制剂的RIPA缓冲液中,在玻璃匀浆器中将脑组织匀浆并定量,将蛋白质经过常规十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离、电转移、抗体反应(PINK1、PARKIN、LC3及P62一抗)后,利用增强化学发光(ECL)试剂盒进行可视化,用荧光成像仪拍摄图像,随后用Image J软件定量分析。
-
采用SPSS 27.0软件分析数据,计量资料以均数
$ \pm $ 标准差($ \bar{x} \pm s $ )表示,P<0.05时,差异有统计学意义。单因素方差分析用于多组间比较,以snk-q检验进一步两两比较。 -
与假手术组相比,IS组神经功能评分显著增加(P<0.001);但经药物-L组、药物-M组、药物-H组干预后,神经功能评分逐渐降低,呈剂量依赖性(P<0.001);与药物-H组相比,药物-H+3-MA组神经功能评分显著增加(P<0.001),见图1。
-
假手术组脑组织皮质区结构完整,未见细胞变性,神经元形态饱满,数量较多;而IS组皮质区结构间隙较大,结构疏松,神经元数量明显减少;药物-L组、药物-M组、药物-H组病理状况有所改善,神经元形态逐渐改善,数量逐渐增加;但药物-H+3-MA组较药物-H组皮质区结构呈筛网状,神经元存在坏死现象,见图2。
-
与假手术组相比,IS组神经元凋亡率显著增加(P<0.001);但经药物-L组、药物-M组、药物-H组干预后,神经元凋亡率逐渐降低,呈剂量依赖性(P<0.001);与药物-H组相比,药物-H+3-MA组神经元凋亡率显著增加(P<0.001),见图3、表1。
表 1 各组大鼠细胞凋亡变化比较(
$ \bar{x} \pm s $ ,n=5)组别 凋亡率(%) 假手术组 6.22±0.63 IS组 21.28±2.13*** 药物-L组 16.11±1.63### 药物-M组 11.32±1.14### 药物-H组 8.02±0.81### 药物-H+3-MA组 17.11±1.72△△△ ***P<0.001,与假手术组比较; ###P<0.001,与IS组比较;△△△P<0.001,与药物-H组比较。 -
与假手术组相比,IS组脑组织皮质区自噬小体的数目增加;经药物-L组、药物-M组、药物-H组干预后,皮质区自噬小体的数目也呈现增加趋势,以药物-H组最为显著;但药物-H+3-MA组较药物-H组自噬小体的数目逐渐减少,见图4。
-
与假手术组相比,IS组脑组织线粒体PINK1、ARKIN、LC3及P62蛋白显著增加(P<0.001);与IS组相比,药物-L组、药物-M组、药物-H组PINK1、PARKIN、LC3蛋白表达增加,P62蛋白显著降低,呈剂量依赖性(P<0.01或P<0.001);与药物-H组相比,药物-H+3-MA组PINK1、PARKIN、LC3蛋白表达降低,P62蛋白显著增加(P<0.001),见图5、表2。
表 2 脑组织线粒体中PINK1、PARKIN、LC3及P62表达比较(
$ \bar{x} \pm s $ ,n=8)组别 PINK1/β-actin PARKIN/β-actin LC3/β-actin P62/β-actin 假手术组 0.29±0.03 0.41±0.05 0.38±0.04 0.64±0.07 IS组 0.55±0.06*** 0.69±0.07*** 0.62±0.07*** 1.85±0.19*** 药物-L组 0.72±0.08## 0.96±0.10### 0.83±0.09## 1.34±0.14### 药物-M组 0.92±0.10### 1.39±0.14### 1.24±0.13### 1.06±0.11### 药物-H组 1.34±0.15### 1.67±0.17### 1.67±0.17### 0.72±0.08### 药物-H+3-MA组 0.66±0.07△△△ 0.88±0.09△△△ 0.75±0.08△△△ 1.42±0.15△△△ ***P<0.001,与假手术组比较; ##P<0.01,###P<0.001,与IS组比较;△△△P<0.001,与药物-H组比较。 -
咪达唑仑是一种γ-氨基丁酸A苯二氮卓类受体激动剂,是诱导镇静的常用麻醉剂,咪达唑仑处理可维持树突结构,并且不影响麻醉期间的神经元发育,研究表明咪达唑仑可以保护大脑中动脉闭塞诱导的神经元变性和神经细胞凋亡[14]。本研究发现IS大鼠神经功能评分、神经元凋亡率显著增加,HE结果显示皮质区病理损伤严重,皮质区结构疏松、间隙较大,提示IS大鼠的构建伴随着严重的神经元损伤,与杨秋怡等[15]结果相吻合。但经不同剂量的咪达唑仑治疗后,病理损伤得到改善,神经功能评分、神经元凋亡率显著降低,呈剂量依赖性,提示咪达唑仑尤其是高剂量咪达唑仑可保护IS大鼠神经元损伤,但其机制仍未阐明。
自噬是一种基因程序化的过程,选择性自噬最典型的类型是线粒体自噬,即针对受损的线粒体进行降解,促进线粒体的更新,防止功能障碍的细胞器积累[16-17]。在自噬过程中,LC3羧基端经剪切后形成LC3I,LC3I泛素化后形成LC3II,在自噬体膜表面附着,LC3II与LC3I比值是判断自噬体形成的标志。LC3与P62结合形成自噬小体,P62会随溶酶体的降解而降解,P62与自噬强弱呈反比[10]。PINK1-PARKIN介导的线粒体自噬在线粒体质量控制中起关键作用,并与多种疾病相关,包括神经退行性疾病、心血管疾病以及脑缺血损伤[18-19]。在脑缺血再灌注大鼠中,活血荣络方在一定程度上通过激活PINK1/Parkin介导的自噬抑制神经元损伤,保护大鼠受损脑组织[20]。本研究结果发现IS大鼠自噬小体较多,线粒体中PINK1、PARKIN、LC3及P62蛋白显著增加,提示IS大鼠脑组织中自噬体增加,但并未得到及时降解;经咪达唑仑干预后,IS大鼠自噬小体逐渐增多,线粒体中PINK1、PARKIN、LC3蛋白显著增加,P62蛋白表达降低,提示咪达唑仑可通过激活PINK1/PARKIN信号通路激活线粒体自噬,并加快自噬体降解,减轻IS大鼠神经元损伤。为进一步验证实验结论,以自噬抑制剂3-MA进行回复验证,结果发现3-MA逆转了咪达唑仑对IS大鼠神经元损伤的保护作用,表明咪达唑仑改善IS大鼠神经元损伤,与激活PINK1/PARKIN信号通路有关。
综上所述,咪达唑仑通过激活PINK1/PARKIN信号通路诱导IS大鼠线粒体自噬,降低神经元凋亡,改善IS大鼠神经元损伤,为咪达唑仑治疗脑中风提供理论依据。
Effect of midazolam on neuronal damage in ischemic stroke rats by regulating the PINK1/PARKIN signaling pathway
-
摘要:
目的 探讨咪达唑仑对缺血性脑卒中(IS)大鼠神经元损伤的影响及其与PTEN诱导假定激酶1(PINK1)/E3泛素连接酶(PARKIN)信号通路的调节作用。 方法 通过动脉阻塞法建立IS大鼠模型,将造模成功的大鼠随机分为IS组、药物低、中、高剂量(药物-L、M、H,30、60、90 mg/kg咪达唑仑)组、药物-H+自噬抑制剂-3-MA组(90 mg/kg咪达唑仑+30 mg/kg 3-MA),并以仅分离血管的大鼠为假手术组,各组均进行相应剂量药物或生理盐水干预,随后进行神经功能评分、脑组织病理学、神经元凋亡、超微结构以及线粒体中PINK1、PARKIN、微管相关蛋白1轻链3(LC3)及P62蛋白表达检测。 结果 与IS组相比,药物-L组、药物-M组、药物-H组病理损伤得到改善,自噬小体呈现增加趋势,PINK1、PARKIN、LC3蛋白表达增加,神经功能评分、神经元凋亡率、P62蛋白显著降低,呈剂量依赖性(P<0.01或P<0.001);与药物-H组相比,药物-H+3-MA组病理损伤加重,自噬小体减少,PINK1、PARKIN、LC3蛋白表达降低,神经功能评分、神经元凋亡率、P62蛋白显著增加(P<0.001)。 结论 咪达唑仑通过激活PINK1/PARKIN信号通路诱导IS大鼠线粒体自噬,降低神经元凋亡,改善IS大鼠神经元损伤。 Abstract:Objective To investigate the effect of midazolam on neuronal damage in ischemic stroke (IS) rats and its regulatory effect on PTEN-induced putative kinase 1 (PINK1)/E3 ubiquitin ligase (PARKIN) signaling pathway. Methods An IS rat model was established using arterial occlusion method. The rats with successful model were randomly divided into IS group, drug-low, medium, high-dose (drug-L, M, H, 30, 60, 90 mg/kg midazolam) groups, drug-H+autophagy inhibitor 3-MA group (90 mg/kg midazolam+30 mg/kg 3-MA), and rats with only isolated blood vessels were used as sham surgery groups. Each group received corresponding doses of drugs or physiological saline intervention, and the neurological function scoring, brain histopathology, neuronal apoptosis, ultrastructure, and expression of PINK1, PARKIN, microtubule-associated protein 1 light chain 3 (LC3), and P62 protein in mitochondria were detected. Results Compared with the IS group, the pathological damage of the drug-L group, drug-M group, and drug-H group was improved, and autophagosomes showed an increasing trend, the expression of PINK1, PARKIN, and LC3 proteins increased, the neurological function score, neuronal apoptosis rate, and P62 protein obviously decreased in a dose-dependent manner (P<0.01 or P<0.001); compared with the drug-H group, the pathological damage in the drug-H+3-MA group increased and autophagosomes decreased, the expression of PINK1, PARKIN, and LC3 proteins decreased, the neurological function score, neuronal apoptosis rate, and P62 protein obviously increased (P<0.001). Conclusion Midazolam induced mitochondrial autophagy in IS rats by activating the PINK1/PARKIN signaling pathway, neuronal apoptosis was reduced and neuronal damage were improved in IS rats. -
Key words:
- KER WORDS Midazolam /
- PINK1/PARKIN signaling pathway /
- Ischemic stroke /
- Neuron /
- Autophagy /
- Apoptosis
-
烟草流行是世界有史以来面临的最大公共卫生威胁之一,全球每年有800多万人由于烟草而死亡[1],吸烟不仅是各种非传染性疾病常见的主要风险因素,尤其是慢性呼吸道疾病、心血管疾病、癌症和糖尿病,同时会影响周围人的健康,而且对个人和国家的经济及社会形象产生负面影响[2]。据估计,每年全球消耗治疗烟草相关疾病的费用约1.4万亿美元[1]。
戒烟是降低非传染性疾病风险的最重要有效的干预措施之一。随着公共卫生工作的防范与发展,60%的烟草使用者希望戒烟[3],但只有约35%能够获得全面的戒烟服务,患者的戒烟意愿突显了在医疗系统内扩大戒烟可及服务及优先开展戒烟治疗的重要性[4-5]。
1. 药师参与戒烟的价值及其发展进程
1.1 药师参与戒烟的价值
由于尼古丁的成瘾性,依靠吸烟者以自我管理的方式戒烟实施困难。事实证明,医疗保健专业人员提供的戒烟干预措施比自助式戒烟更有效[6]。药师的工作职责是为公众调配处方、提供用药指导与建议、解答用药咨询等,被认为是为公众提供戒烟服务的最佳专业人员,不仅能够指导其正确使用戒烟替代药品及提供相关建议,同时也可以给予戒烟行为上的专业支持[6-7]。
药师及其药房团队提供的戒烟服务有助于帮助吸烟者戒烟 [8]。葡萄牙进行的一项研究发现,接受药师服务的患者相较于对照组会参加更多社区药房主导的用药咨询(χ2=59.994,P<0.001)、更多电话会议(χ2=17.845,P<
0.0013 ),因此戒烟成功率更高[9]。新加坡一家三级转诊皮肤病中心进行的一项单中心回顾性研究评估了由药师领导的结构化戒烟诊所的疗效,表明药师及其药房团队主导的患者咨询服务能有效为戒烟者提供行为支持[10]。1.2 药师参与戒烟政策支持的发展进程
1.2.1 世界卫生组织的号召与行动
1998年,世界卫生组织(WHO)首次认识到药师在帮助个人戒烟和防止潜在使用者方面的关键作用[11]。2003年为应对全球烟草流行,WHO成员国通过了《世界卫生组织烟草控制框架公约》(WHO FCTC)[12-13],要求缔约方采取有效措施促进戒烟。WHO FCTC是促进公众健康的一个里程碑,自2005年生效以来,WHO FCTC已有183个缔约方,涵盖90%以上的世界人口[14]。
为了扩大实施WHO FCTC中关于减少烟草需求的条款,WHO在2007年还启动了一项具有成本效益的实用行动MPOWER系列措施[15]。MPOWER措施中的策略与WHO FCTC相一致,已证明在挽救生命和降低医疗卫生费用方面卓有成效[1]。然而随着WHO FCTC的成功实施,一些中低收入国家也面临着来自烟草产业对其干扰的重大障碍[16-17]。药师可以在克服这些问题及现有制度和行业体系结构进行重大变革中发挥一定作用,为促进烟草控制和戒烟工作做出应有的贡献[18]。2019年WHO发布的全球烟草流行报告中,强调了药师为吸烟者戒烟提供帮助,并高度鼓励成员国就此采取行动[19]。
目前,151个国家至少实施了WHO FCTC及MPOWER措施中的一项,150个国家的烟草使用率正在下降。2000年,全世界大约1/3的成年人吸烟,然而,到2022年这一数字已大幅下降约1/5,这反映出各国在减少全球烟草消费方面取得了相当大的进展[20]。
1.2.2 国际药学会的响应与行动
2003年,国际药学会(FIP)发布了关于药师在促进无烟未来中的作用的政策声明。2007年出版的《遏制烟草流行病:药学的全球作用》和2015年出版的《建立无烟社区:药师实用指南》均强调了药师在戒烟服务方面的重要贡献。
2023年,FIP出版《支持戒烟和治疗烟草依赖:药师手册》强调药师在为寻求戒烟患者提供系统服务方面的关键作用,是药师支持个人戒烟过程中可参考的综合性实用资源。其涵盖了最新的循证实践、技术和策略,以帮助患者戒烟并减少复吸。该手册详细介绍了以药师为主导的支持戒烟所需的专业知识和实践技能,以及药师可干预的因素(包括非传染性疾病风险因素,如运动不足、不健康饮食习惯和过量饮酒等)及相关措施。随着近年来替代品电子烟使用的增多趋势,出于对电子烟安全性的担忧,同年FIP又发布了《关于电子烟使用对公众健康和经济的影响以及药房工作人员对消除电子烟贡献的声明》[21]。
2024年,WHO和FIP就药师在戒烟中的作用发表了一份新的联合声明,重申了药师在帮助吸烟者戒烟中发挥的关键作用。该声明中,WHO和FIP敦促各个国家烟草控制组织和国家药学协会制定并实施戒烟计划,同时在该计划和各国卫生系统服务的背景下,让药师参与到与烟草的斗争工作中[22]。
2. 药师提供戒烟服务的可行性
2.1 患者的偏好
有研究表明患者更愿意社区药师参与戒烟服务[23],同时社区药师也有能力开展戒烟服务[24]。美国一家三级护理医院进行的一项研究表明,药师无论是在患者入院还是出院时,都可以对患者开展戒烟宣教与指导,在了解患者疾病与用药史、药物核对和出院咨询工作流程中与患者讨论吸烟问题,通过患者住院期间开展戒烟治疗并不断完善方案,达到有效戒烟的目的[25]。
2.2 赋予药师戒烟药物处方权
英国在新型冠状病毒流行期间进行的一项研究表明,药师可以通过远程咨询为戒烟患者开具处方,提供有效的戒烟服务。目前,英国国家医疗服务体系(NHS)正在支持现有药师(包括社区药房药师)获得处方资格,根据患者需要开具戒烟药物从而促进戒烟服务开展。计划到2026年,在英国完成药学学位的毕业生将在监管机构注册为独立处方权药师, 进而扩大了可以提供戒烟服务药师的范围[26]。
美国药师有权根据合作处方协议或通过州范围的协议拥有自主处方权或授权开具处方。处方医生将开启、修改和停止药物治疗以及开具实验室检查的权利委托给药师。药师在完成继续教育课程后,可以根据国家法律法规授予的权限开具某些药物[27]。
2.3 开展药师戒烟服务培训
药师的戒烟培训应包括基于行为支持的社区药师培训课程,通过戒烟服务个体化随访识别障碍并提供积极的强化措施,可以有效提高患者戒烟率,进而提高其生活质量[28]。El Hajj等[29]在卡塔尔进行的一项随机对照试验评估了戒烟培训计划对药师技能和能力的影响,共有86名社区药师(干预组54名,对照组32名)完成了6个目标结构化临床检查病例。研究结果表明,强化戒烟培训显著提高了社区药师提供戒烟服务的技能和能力。
在一项评估埃塞俄比亚药师和药学学生对吸烟/戒烟的知识和态度的横断面调查中,与未接受过戒烟培训的人相比,接受过培训人员的平均知识和态度得分明显更高[30]。Greenhalgh等[31]通过定性和混合方法进行的描述性综合和真实世界调查表明,精心设计的戒烟培训课程将药师从生物医学和产品导向的角度,转变为以公共卫生和患者为中心的角度方面发挥至关重要的作用。
2.4 跨专业合作对于加强药师在戒烟中角色的影响
促进戒烟的跨专业合作可以提高患者的戒烟率。一项探索医疗卫生保健专业人员与社区药师之间跨专业合作的研究表明,将社区药师为患者提供戒烟服务纳入患者护理项目是很有价值的,社区药房开展戒烟支持服务可以填补现有医院戒烟与家庭戒烟之间的空白。跨专业合作不仅为患者和医疗保健专业人员之间的有效沟通提供了途径,同时通过医疗保健专业人员汇总的患者电子健康记录,可以提高患者用药治疗的安全性[32]。
根据Greenhalgh等[31]的说法,增加药师和其他医疗从业者之间的跨专业互动是社区药房提供有效戒烟服务的先决条件。药师专业的能力增强了临床医生对药师的信任,因此,明确且精准的转诊途径,特别是当地全科医生将戒烟患者转诊给药师,对于跨专业开展戒烟服务是必要的。
Bouchet-Benezech等[33]在法国进行的一项研究表明,与其他医疗保健专业人员的合作是发挥药师在戒烟服务中作用的关键之一。药师为戒烟者提供的尼古丁替代治疗处方没有得到社会医疗保险体系的支持,因此建议药师与具有尼古丁替代治疗处方权的其他医疗保健专业人员合作。
3. 药师开展戒烟服务的效益
3.1 健康相关的获益
吸烟是非传染性疾病的主要可变风险因素之一。药师主导的戒烟干预措施可以显著影响吸烟者的戒烟率,并在改善其健康状况方面发挥关键作用[34]。
Peletidi等[35]的调查研究表明,以社区药师主导的戒烟服务可以降低与吸烟相关慢病的发病率和病死率。Bouchet-Benezech等[33]为评估法国社区药房药师提供戒烟服务的可行性而进行的一项研究显示,在第6个月,23.3%的参与者参加了随访,其中75%的参与随访者自第一次随访以来一直保持戒烟状态,超过一半的参与者持续了90 d,从第二次随访开始,所有参与者的身心健康综合得分与基线相比都有所提高。
药师作为一线医疗保健提供者,在戒烟工作中发挥着关键作用,可以在更大范围内对个体和公共健康产生重大影响。社区药房的戒烟服务应该被纳入国家公共卫生保健政策,这对于促进社区服务的健康有积极的促进作用[36]。
3.2 经济相关的获益
Peletidi等[35]在英国进行的一项系统综述强调了将药房主导的戒烟服务与对照组进行比较的研究,提供了强有力的证据证明药房主导的服务具有很高的成本效益。药房主导的服务要求每位戒烟者在为期4周的方案中支付772英镑的补充成本,而对照组基于集体小组的服务需要1 612英镑的戒烟补充成本。同时接受药房主导的戒烟服务,每周一对一的支持结合尼古丁替代疗法的治疗,与对照组接受集体戒烟治疗药物相比具有更高的有效戒烟率。此外,药房主导的服务每生命质量调整年的增量成本为2 600英镑,而对照组为4 800英镑。
社区药师是提供戒烟服务的一种可获得的、未充分利用的但具有成本效益的资源[24,28,35]。一项随机试验旨在比较两个药师主导的戒烟计划(强化版与简化版)之间的戒烟率以及这些计划与基于文献的对照组之间的成本效益,揭示了强化版药师主导的戒烟计划是3种策略中最具成本效益的干预措施。强化版比简化版多花费了14 000美元(每100名参与者),但14人戒烟成功,取得10.8个生命年的获益额;强化版比对照组多花费35 300美元(每100名参与者),但29名戒烟者取得22.4个生命年的获益,每增加一名戒烟者多花费1 217美元,戒烟的增量成本效果比为1 576美元 [32]。
2000年,一项在英格兰进行的研究从提供者和NHS的角度比较了普通牙科诊所、普通医疗诊所(GMP)、社会药房和NHS戒烟服务(NHS SSS)中戒烟服务的成本效益,研究结果表明“成本效益高”的服务是在社区药房开展戒烟服务[37]。
由此可见,药师主导的戒烟服务不仅有效且极具成本效益,医疗卫生管理者及政策制定者可以基于此就最佳资源分配做出合理决策[24]。
4. 药师在提供戒烟服务方面发挥作用的障碍
然而,有证据表明,药师在承担戒烟服务提供者这一角色存在障碍,这影响了将全面戒烟服务纳入实践的可行性。障碍包括缺乏充分的培训、缺乏适当的转诊结构、社区药房环境中的时间限制、公众对药剂师提供戒烟服务缺乏认识、药房缺乏私人咨询区以及缺乏提供服务的报销[33]。
4.1 缺乏专业临床戒烟知识与技能
在许多国家,药师缺乏戒烟知识和技能以及缺乏培训被认为是药师在提供戒烟服务方面发挥作用的常见障碍[6,30,32,35,38-39]。Erku等[30]在埃塞俄比亚进行的一项由410名参与者(213名药学学生和197名药师)的横断面调查,提出药师在戒烟服务方面存在临床知识不足和实践技能差距。澳大利亚进行的另一项研究分析了250名大四药学专业学生、51名药师和20名戒烟教育工作者在当前基于证据的药房戒烟干预实践中的表现,得出了药学学生及药师与戒烟教育工作者之间存在较大的临床或药物治疗服务方面的差距[34]。药师由于缺乏戒烟相关教育与培训导致在戒烟服务中缺乏自信,从而阻碍了与患者的有效沟通,降低了提供的戒烟服务的质量[35,39]。在约旦,大多数药师认为,由于培训不到位导致对戒烟治疗的了解不足,致使药师无法提供足够的戒烟干预措施[40]。
4.2 缺乏劳务报酬与戒烟药物处方权
缺乏戒烟计划或劳务报酬也是许多有意愿药师提供戒烟服务的一个障碍[31-33,39-40]。美国的一篇研究论文探讨了药师在护理过渡期间(住院到出院回家期间)如何衔接戒烟服务,得出支付报酬对维持任何医疗服务(包括药师提供的戒烟服务)至关重要。由于药师不被视为戒烟服务的提供者,因此美国大多数州的药师没有资格通过医疗补助获得提供戒烟服务的劳务报酬,通过商业保险获得报销的也很少见。缺乏鼓励药师向烟草使用者提供戒烟干预措施的计划和政策,药师没有戒烟药物处方权也大大阻碍了戒烟服务的开展[35]。研究表明,授予药师戒烟服务提供者身份或药师拥有戒烟药物处方权,并在医保政策中明确劳务报酬的支付标准,可能是解决该问题的最佳方式[40]。
4.3 缺乏戒烟环境及服务时间上的保障
社会药店缺乏相对私人空间为患者进行戒烟咨询服务也是障碍之一[6,33]。药店是否设有专门的可以为患者提供面对面戒烟服务咨询的区域,为患者咨询营造一个轻松舒适的环境,对于提高患者戒烟依从性是非常重要的影响因素[33]。药师实施戒烟服务与履行其他职责在时间上的矛盾也是限制戒烟服务工作开展的障碍之一[34-35]。根据Peletidi等[35]的系统调查结果显示,缺乏时间是所有参与戒烟服务者,包括患者在内的共性问题。日本对11家社区药房进行的一项随机研究显示,由于时间和精力有限,许多药房没有将戒烟服务纳入其日常运营范围[32]。
4.4 缺乏戒烟需求与服务
在法国、约旦和尼日利亚等一些国家,对戒烟服务的需求不足被视为药师开展戒烟服务的障碍[9,33,40]。由于缺乏戒烟服务,泰国的戒烟率很低,因此需要在药店开展戒烟服务,为药师提供机会[36]。为了解决这一问题,Bouchet等[33]评估了法国社区药房实施药师提供的戒烟方案的可行性,并建议向社区药房顾客有效推广戒烟服务,以解决需求不足的问题。
4.5 社区药房开展戒烟服务的问题
社会药房在烟草控制政策中的参与度较低[9],原因是医疗机构与社会药房缺乏统一的转诊系统来保障提供安全、有效的戒烟服务[23,28]。社会药房药师在无法全面、详细获得患者医疗护理、处方记录的前提下,也就意味着无法了解到患者准确的疾病史与用药史,提供戒烟药物及相关指导可能会增加用药错误的可能性[26]。其他阻碍戒烟服务工作开展的因素还包括性别、年龄、民族、文化等不同所带来的戒烟者个性化差异及沟通交流障碍[23]。
5. 展望
全面了解药师主导的戒烟服务及其在不同地区和医疗保健环境中的影响,对于世界各国药师参与戒烟服务至关重要。基于药师缺乏戒烟知识、技能和培训有关的问题,政策制定者和教育工作者需要做更多的工作,以确保戒烟服务对患者的最大益处。有必要针对不同地区和国家的具体需求采取全面的能力建设措施,包括制定标准化的培训计划,采用线下结合远程学习方式助力药师实践技能发展,促进全球药师专业的持续深入发展。
医药卫生政策制定应适时考虑将药师主导的戒烟服务纳入国家和地区医疗卫生服务指南,并开展宣传工作,提高人们对药师在戒烟方面发挥作用的认识。立法明确和药师薪酬补偿将有利于公众获得经许可的戒烟服务的机会,扩大药师在提供戒烟服务中的作用也有利于增强公众戒烟信心,同时在不同的医疗保健环境中实施和扩大这些服务争取足够的资源与支持。未来应促进药师、医师、护师、公共卫生专业人员及其他参与烟草控制工作的利益相关者之间更紧密的合作,激发出药师主导戒烟干预措施的全部潜力,提高戒烟的有效性和可持续性。
随着医药卫生体制的改革及药师进一步以患者为中心的角色转变,药师的可及性被视为开展戒烟服务的最重要驱动因素之一。药师和社会药房团队能够通过结合药理学和行为学方法持续提供成本效益高的个体化戒烟服务,提高戒烟率,最终达到减轻烟草和尼古丁依赖以及烟草相关疾病的负担,促进医疗卫生系统的发展、改善全球卫生状况。
-
表 1 各组大鼠细胞凋亡变化比较(
$ \bar{x} \pm s $ ,n=5)组别 凋亡率(%) 假手术组 6.22±0.63 IS组 21.28±2.13*** 药物-L组 16.11±1.63### 药物-M组 11.32±1.14### 药物-H组 8.02±0.81### 药物-H+3-MA组 17.11±1.72△△△ ***P<0.001,与假手术组比较; ###P<0.001,与IS组比较;△△△P<0.001,与药物-H组比较。 表 2 脑组织线粒体中PINK1、PARKIN、LC3及P62表达比较(
$ \bar{x} \pm s $ ,n=8)组别 PINK1/β-actin PARKIN/β-actin LC3/β-actin P62/β-actin 假手术组 0.29±0.03 0.41±0.05 0.38±0.04 0.64±0.07 IS组 0.55±0.06*** 0.69±0.07*** 0.62±0.07*** 1.85±0.19*** 药物-L组 0.72±0.08## 0.96±0.10### 0.83±0.09## 1.34±0.14### 药物-M组 0.92±0.10### 1.39±0.14### 1.24±0.13### 1.06±0.11### 药物-H组 1.34±0.15### 1.67±0.17### 1.67±0.17### 0.72±0.08### 药物-H+3-MA组 0.66±0.07△△△ 0.88±0.09△△△ 0.75±0.08△△△ 1.42±0.15△△△ ***P<0.001,与假手术组比较; ##P<0.01,###P<0.001,与IS组比较;△△△P<0.001,与药物-H组比较。 -
[1] ZHAO B, YUAN Q, HOU J B, et al. Inhibition of HDAC3 ameliorates cerebral ischemia reperfusion injury in diabetic mice in vivo and in vitro[J]. J Diabetes Res, 2019, 2019:8520856. [2] XIAO L, DAI Z W, TANG W J, et al. Astragaloside IV alleviates cerebral ischemia-reperfusion injury through NLRP3 inflammasome-mediated pyroptosis inhibition via activating Nrf2[J]. Oxid Med Cell Longev, 2021, 2021(1):9925561. [3] SO P W, EKONOMOU A, GALLEY K, et al. Intraperitoneal delivery of acetate-encapsulated liposomal nanoparticles for neuroprotection of the penumbra in a rat model of ischemic stroke[J]. Int J Nanomedicine, 2019, 14:1979-1991. doi: 10.2147/IJN.S193965 [4] MANSO M A, GUITTET C, VANDENHENDE F, et al. Efficacy of oral midazolam for minimal and moderate sedation in pediatric patients: a systematic review[J]. Paediatr Anaesth, 2019, 29(11):1094-1106. doi: 10.1111/pan.13747 [5] YU H, WANG X Z, KANG F X, et al. Neuroprotective effects of midazolam on focal cerebral ischemia in rats through anti-apoptotic mechanisms[J]. Int J Mol Med, 2019, 43(1):443-451. [6] GUAN R Q, ZOU W, DAI X H, et al. Mitophagy, a potential therapeutic target for stroke[J]. J Biomed Sci, 2018, 25(1):87. doi: 10.1186/s12929-018-0487-4 [7] SUN E, ZHANG J, DENG Y, et al. Docosahexaenoic acid alleviates brain damage by promoting mitophagy in mice with ischaemic stroke[J]. Oxid Med Cell Longev, 2022, 2022:3119649. [8] GUO P P, JIN Z, WU H S, et al. Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion[J]. Brain Behav, 2019, 9(10):e01425. [9] 杨涛, 刘勇, 曹兴华, 等. 三七总皂苷对短暂性前脑缺血大鼠海马区神经元的修复作用实验研究[J]. 陕西医学杂志, 2023, 52(7):803-808. doi: 10.3969/j.issn.1000-7377.2023.07.006 [10] 周丽娜, 辛欢, 杨敏, 等. 丹参酚酸A对脑缺血大鼠神经功能及热休克蛋白基因表达的影响[J]. 陕西中医, 2022, 8(11):1521-1526. [11] 李亚琴, 任维, 罗钢, 等. 蛭龙活血通瘀胶囊对缺血性脑卒中模型大鼠的作用及对脑皮层神经元线粒体的影响[J]. 中药药理与临床, 2021, 37(5):119-124. [12] 刘建, 叶玉军, 刘树民, 等. 基于p38MAPK信号通路分析咪达唑仑对腰椎间盘突出症模型大鼠疼痛的影响[J]. 中国骨伤, 2023, 9(1):55-60. [13] 陆晓华, 金桂芳, 余河汉, 等. 基于PINK1/Parkin信号通路研究细叶远志皂苷对AD模型小鼠脑组织线粒体自噬的影响[J]. 中国药房, 2021, 7(22):2748-2754. doi: 10.6039/j.issn.1001-0408.2021.22.11 [14] LIU J Y, GUO F, WU H L, et al. Midazolam anesthesia protects neuronal cells from oxidative stress-induced death via activation of the JNK-ERK pathway[J]. Mol Med Rep, 2017, 15(1):169-179. doi: 10.3892/mmr.2016.6031 [15] 杨秋怡, 王琪, 马博. 柔肝通络汤上调血管内皮生长因子及其受体表达对缺血性脑卒中大鼠脑皮质血管再生、神经元损伤的影响[J]. 广州中医药大学学报, 2022, 39(12):2870-2876. [16] PALIKARAS K, LIONAKI E, TAVERNARAKIS N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology[J]. Nat Cell Biol, 2018, 20(9):1013-1022. doi: 10.1038/s41556-018-0176-2 [17] 王谢, 谢道俊, 杜世超, 等. 肝豆灵片对肝豆状核变性认知障碍模型小鼠海马神经元自噬的作用机制[J]. 陕西中医, 2023, 44(7):833-838. doi: 10.3969/j.issn.1000-7369.2023.07.002 [18] WEN H X, LI L X, ZHAN L X, et al. Hypoxic postconditioning promotes mitophagy against transient global cerebral ischemia via PINK1/Parkin-induced mitochondrial ubiquitination in adult rats[J]. Cell Death Dis, 2021, 12(7):630. doi: 10.1038/s41419-021-03900-8 [19] WU M, LU G, LAO Y Z, et al. Garciesculenxanthone B induces PINK1-Parkin-mediated mitophagy and prevents ischemia-reperfusion brain injury in mice[J]. Acta Pharmacol Sin, 2021, 42(2):199-208. doi: 10.1038/s41401-020-0480-9 [20] 颜思阳, 杨仁义, 刘利娟, 等. 活血荣络方对脑缺血再灌注损伤大鼠PINK1/Parkin信号通路的影响[J]. 中国中医药信息杂志, 2023, 30(2):87-92. -