[1]
|
Yan ZY, Niu YN, Wei HL, et al. Combining proline and 'click chemistry': a class of versatile organocatalysts for the highly diastereo-and enantioselective Michael addition in water[J]. Tetrahedron: Asymmetry, 2006, 17: 3288. |
[2]
|
Zhang L, Xu H, Mi XL, et al. Chiral pyrrolidine-azole conjugates: Simple and efficient asymmetric organocatalysts for Michael addition to nitrostyrenes[J]. Chinese Sci Bull, 2010, 55: 1735. |
[3]
|
Saito S, Nakadai M, Yamamoto H. Diamine-protonic acid catalysts for catalytic asymmetric aldol reaction[J]. Synlett, 2001, 8: 1245. |
[4]
|
Nobuyuki M, Yusuke N, Naoko O, et al. Organocatalytic direct asymmetric aldol reactions in water[J]. J Am Chem Soc, 2006, 128: 734. |
[5]
|
Pansare SV, Raie LK. Secondary-secondary diamine catalysts for the enantioselective michael addition of cyclic ketones to nitroalkenes[J]. Tetrahedron, 2009, 65: 4557. |
[6]
|
Marigo M, Fielenbach D, Braunton A, et al. Enantioselective formation of stereogenic carbon-fluorine centers by a simple catalytic method[J]. Angew Chem Int Ed, 2005, 44: 3703. |
[7]
|
Wu J, Ni B, Headley AD. Di(methylimidazole)prolinol silyl ether catalyzed highly michael addition of aldehydes to nitroolefins in water[J]. Org Lett, 2009, 11: 3354. |
[8]
|
Lin QY, Meloni D, Pan YC, Michael Xia, et al. Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-michael reaction[J]. Org Lett, 2009, 11: 1999. |
[9]
|
Bondzic PB, Urushima T, Ishikawa H, et al. Asymmetric epoxidation of α-substituted acroleins catalyzed by diphenylprolinol silyl ether[J]. Org Lett, 2010, 12: 5434. |
[10]
|
Jia YN, Wu FC, Ma X, et al. Highly ef?cient prolinamide-based organocatalysts for the direct asymmetric aldol reaction in brine[J]. Tetrahedron Lett, 2009, 50: 3059. |
[11]
|
Pasternak M, Paradowska J, Rogozińska M, et al. Direct asymmetric α-hydroxymethylation of ketones in homogeneous aqueous solvents[J]. Tetrahedron Lett, 2010, 51: 4088. |
[12]
|
林国强, 陈耀全, 李月明, 等. 手性合成-不对称反应及其应用[M]. 北京: 科学出版社,2007: 118. |
[13]
|
Saha S, Seth S, Moorthy JN. Functionalized proline with double hydrogen bonding potential: highly enantioselective michael addition of carbonyl compounds to b-nitrostyrenes in brine[J]. Tetrahedron Lett, 2010, 51: 5281. |
[14]
|
Yang H, Mahapatra S, Cheong PHY, et al. Highly stereoselective and scalable anti-aldol reactions using N-(p-Dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide: scope and rigins of stereoselectivities[J]. J Org Chem, 2010, 75:7279. |
[15]
|
Wei SW, Yalalov DA, Tsogoeva SB, et al. New highly enantioselective thiourea-based bifunctional organocatalysts for nitro-michael addition reactions[J]. Catalysis Today, 2007, 121: 151. |
[16]
|
Demir AS, Eymur S. Self-assembly of organocatalysts for the enantioselective michael addition of aldehydes to nitroalkenes[J]. Tetrahedron:Asymmetry, 2010, 21: 112. |
[17]
|
Lu AD, Gao P, Wu Y, et al. Highly enantio-and diastereoselective michael addition of cyclohexanone to nitroolefins catalyzed by a chiral glucose-based bifunctional secondary amine-thiourea catalyst[J]. Org Biomol Chem, 2009, 7: 3141. |
[18]
|
Tsogoeva SB, Jagtap SB, Ardemasova ZA, et al. Ardemasovab 4-trans-Amino-proline based di-and tetrapeptides as organic catalysts for asymmetric C-C bond formation reactions[J]. Tetrahedron: Asymmetry, 2006, 17: 989. |
[19]
|
Chen FB, Huang S, Zhang H, et al. Proline-based dipeptides with two amide units as organocatalyst for the asymmetric aldol reaction of cyclohexanone with aldehydes[J]. Tetrahedron, 2008, 64: 9585. |
[20]
|
Wu FC, Da CS, Du ZX, et al. N-Primary-Amine-Terminal γ-Turn tetrapeptides as organocatalysts for highly enantioselective aldol reaction[J]. J Org Chem, 2009, 74: 4812. |
[21]
|
Agarwal J, Peddinti RK. Asymmetric michael addition catalysed by sugar-based prolinamides in solvent-free conditions[J]. Tetrahedron Lett, 2011, 52: 117. |
[22]
|
Dinér P, Amedjkouh M. Aminophosphonates as organocatalysts in the direct asymmetric aldol reaction: towards syn selectivity in the presence of Lewis bases[J]. Org Biomol Chem, 2006, 4: 2091. |
[23]
|
Tan B, Zeng XF, Lu Y, et al. Rational design of organocatalyst: highly stereoselective michael addition of cyclic ketones to nitroole?ns[J]. Org Lett, 2009, 11: 1927. |
[24]
|
Xu DZ, Liu YJ, Hui Li, et al. A new kind of organophosphorus compounds as an efficient catalyst for asymmetric C-C bond formation reactions[J]. Tetrahedron, 2010, 66: 8899. |
[25]
|
Luo S, Mi X, Zhang L, et al. Functionalized chiral Ionic Liquids as highly efficient asymmetric organocatalysts for michael addition to nitroolefins[J]. Angew Chem Int Ed, 2006, 45: 3093. |
[26]
|
Xu DZ, Liu YJ, Shi S, et al. Chiral quaternary alkylammonium ionic liquid [Pro-dabco]BF4]: as a recyclable and highly efficient organocatalyst for asymmetric michael addition reactions[J]. Tetrahedron: Asymmetry, 2010, 21: 2530. |
[27]
|
Fu YQ, An YJ, Liu WM, et al. Highly diastereo-and enantioselective direct aldol reaction catalyzed by simple amphiphilic proline derivatives[J]. Catal Lett, 2008, 124: 397. |
[28]
|
Kristensen TE, Kristian V, Jakobsen MG, et al. A general approach for preparation of polymer-supported chiral organocatalysts via acrylic copolymerization[J]. J Org Chem, 2010, 75: 1620. |
[29]
|
Prasetyanto EA, Khan NH, Seo HU, et al. Asymmetric epoxidation of a, b-unsaturated ketones over heterogenized chiral proline diamide complex catalyst in the solvent-Free condition[J]. Top Catal, 2010, 53: 1381. |