留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

真菌多药耐药外排机制的研究进展

康烨 周密 阎澜

康烨, 周密, 阎澜. 真菌多药耐药外排机制的研究进展[J]. 药学实践与服务, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
引用本文: 康烨, 周密, 阎澜. 真菌多药耐药外排机制的研究进展[J]. 药学实践与服务, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
KANG Ye, ZHOU Mi, YAN Lan. Progress of the drug efflux mechanisms underlying fungi multidrug resistance[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
Citation: KANG Ye, ZHOU Mi, YAN Lan. Progress of the drug efflux mechanisms underlying fungi multidrug resistance[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002

真菌多药耐药外排机制的研究进展

doi: 10.3969/j.issn.1006-0111.2016.06.002
基金项目: 国家自然科学基金面上项目(81470158)

Progress of the drug efflux mechanisms underlying fungi multidrug resistance

  • 摘要: 真菌多药耐药性是指真菌细胞对结构不同、作用靶点不同的药物同时具有耐药性的现象,是导致临床抗真菌治疗失败的重要原因之一。本文综述了酿酒酵母、条件致病真菌白假丝酵母、光滑假丝酵母和烟曲霉中多药耐药相关转运蛋白、药物外排机制以及基因表达调控网络的研究进展,旨在为深入了解真菌多药耐药性的机制、探讨克服多药耐药性的策略和提高抗真菌药物的药效提供参考。
  • [1] Morschhauser J. Regulation of multidrug resistance in pathogenic fungi[J]. Fungal Genet Biol,2010,47(2):94-106.
    [2] Ernst R, Kueppers P, Stindt J, et al. Multidrug efflux pumps:substrate selection in ATP-binding cassette multidrug efflux pumps——first come, first served?[J]FEBS J,2010,277(3):540-549.
    [3] Cannon RD, Lamping E, Holmes AR, et al. Efflux-mediated antifungal drug resistance[J]. Clin Microbiol Rev,2009,22(2):291-321.
    [4] Prasad R, Goffeau A. Yeast ATP-binding cassette transporters conferring multidrug resistance[J]. Annu Rev Microbiol,2012,66:39-63.
    [5] Simonics T, Kozovska Z, Michalkova-Papajova D, et al. Isolation and molecular characterization of the carboxy-terminal pdr3 mutants in Saccharomyces cerevisiae[J]. Curr Genet,2000,38(5):248-255.
    [6] Bosis E, Salomon D, Ohayon O,et al. Ssz1 restores endoplasmic reticulum-associated protein degradation in cells expressing defective cdc48-ufd1-npl4 complex by upregulating cdc48[J]. Genetics,2010,184(3):695-706.
    [7] Ducett JK, Peterson FC, Hoover LA, et al. Unfolding of the C-terminal domain of the J-protein Zuo1 releases autoinhibition and activates Pdr1-dependent transcription[J]. J Mol Biol,2013,425(1):19-31.
    [8] Prunuske AJ, Waltner JK, Kuhn P, et al. Role for the molecular chaperones Zuo1 and Ssz1 in quorum sensing via activation of the transcription factor Pdr1[J]. Proc Natl Acad Sci USA,2012,109(2):472-427.
    [9] Kolaczkowska A, Manente M, Kolaczkowski M, et al. The regulatory inputs controlling pleiotropic drug resistance and hypoxic response in yeast converge at the promoter of the aminocholesterol resistance gene RTA1[J]. FEMS Yeast Res,2012,12(3):279-292.
    [10] Teixeira MC, Dias PJ, Simoes T, et al. Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1[J]. Biochem Biophys Res Commun,2008,367(2):249-255..
    [11] Gulshan K, Schmidt JA, Shahi P, et al. Evidence for the bifunctional nature of mitochondrial phosphatidylserine decarboxylase:role in Pdr3-dependent retrograde regulation of PDR5 expression[J]. Mol Cell Biol,2008,28(19):5851-5864.
    [12] Teixeira MC, Cabrito TR, Hanif ZM, et al. Yeast response and tolerance to polyamine toxicity involving the drug:H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4[J]. Microbiology,2011,157(Pt 4):945-956.
    [13] Azie N, Neofytos D, Pfaller M, et al. The PATH (Prospective Antifungal Therapy) Alliance ® registry and invasive fungal infections:update 2012[J]. Diagn Microbiol Infect Dis,2012,73(4):293-300.
    [14] Coste A, Turner V, Ischer F, et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans[J]. Genetics,2006,172(4):2139-2156.
    [15] Mandal A, Kumar A, Singh A, et al. A key structural domain of the Candida albicans Mdr1 protein[J]. Biochem J,2012,445(3):313-322.
    [16] Shah AH, Singh A, Dhamgaye S, et al. Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans[J]. Biochem J,2014,460(2):223-235.
    [17] Li R, Kumar R, Tati S, et al. Candida albicans flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity[J]. Antimicrob Agents Chemother,2013,57(4):1832-1839.
    [18] Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis:2009 update by the Infectious Diseases Society of America[J]. Clin Infect Dis,2009,48(5):503-535.
    [19] Torelli R, Posteraro B, Ferrari S, et al. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata[J]. Mol Microbiol,2008,68(1):186-201.
    [20] Paul S, Schmidt JA, Moye-Rowley WS. Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata[J]. Eukaryot Cell,2011,10(2):187-197.
    [21] Brun S, Dalle F, Saulnier P, et al. Biological consequences of petite mutations in Candida glabrata[J]. J Antimicrob Chemother,2005,56(2):307-314.
    [22] Costa C, Pires C, Cabrito TR, et al. Candida glabrata drug:H+ antiporter CgQdr2 confers imidazole drug resistance, being activated by transcription factor CgPdr1[J]. Antimicrob Agents Chemother,2013,57(7):3159-3167.
    [23] Costa C, Nunes J, Henriques A, et al. Candida glabrata drug:H+ antiporter CgTpo3(ORF CAGL0I10384g):role in azole drug resistance and polyamine homeostasis[J]. J Antimicrob Chemother,2014,69(7):1767-1776.
    [24] Denning DW, Pleuvry A, Cole DC. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults[J]. Med Mycol,2013,51(4):361-370.
    [25] Pound MW, Townsend ML, Dimondi V, et al. Overview of treatment options for invasive fungal infections[J]. Med Mycol,2011,49(6):561-580.
    [26] Snelders E, van der Lee HA, Kuijpers J, et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism[J]. PLoS Med,2008,5(11):e219.
    [27] Chowdhary A, Kathuria S, Xu J, et al. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR(3)(4)/L98H mutations in the cyp51A gene in India[J]. PloS one,2012,7(12):e52871.
    [28] Bueid A, Howard SJ, Moore CB, et al. Azole antifungal resistance in Aspergillus fumigatus:2008 and 2009[J]. J Antimicrob Chemother,2010,65(10):2116-2118.
    [29] Escribano P, Pelaez T, Munoz P, et al. Is azole resistance in Aspergillus fumigatus a problem in Spain?[J] Antimicrob Agents Chemother,2013,57(6):2815-2820.
    [30] Kovalchuk A, Driessen AJ. Phylogenetic analysis of fungal ABC transporters[J]. BMC genomics,2010,11:177.
    [31] Rajendran R, Mowat E, McCulloch E, et al. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity[J]. Antimicrob Agents Chemother,2011,55(5):2092-2097.
    [32] Bowyer P,Mosquera J,Anderson M,et al.Identification of novel genes conferring altered azole susceptibility in Aspergillus fumigatus[J].FEMS Microbiol Lett,2012,332(1):10-19.
    [33] Qiao J, Liu W, Li R. Truncated Afyap1 attenuates antifungal susceptibility of Aspergillus fumigatus to voriconazole and confers adaptation of the fungus to oxidative stress[J]. Mycopathologia,2010,170(3):155-160.
  • [1] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [2] 史生辉, 石飞, 雷琼, 王亚峰, 吴雪花.  青藏高原肺结核合并念珠菌感染患者的病原菌分布特点及耐药率分析 . 药学实践与服务, 2024, 42(6): 260-262, 272. doi: 10.12206/j.issn.2097-2024.202304014
    [3] 崔亚玲, 吴琼, 马良煜, 胡北, 姚东, 许子华.  肝素钠肌醇烟酸酯乳膏中肌醇烟酸酯皮肤药动学研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404006
    [4] 钱淑雨, 李铁军.  耐碳青霉烯类肠杆菌耐药机制的研究进展 . 药学实践与服务, 2024, 42(10): 419-425. doi: 10.12206/j.issn.2097-2024.202405005
    [5] 黄韵, 张正银, 金英, 郑怡菁, 李铁军, 孙莉莉.  耐碳青霉烯类肺炎克雷伯菌及大肠埃希菌临床分离株耐药性及耐药基因分析 . 药学实践与服务, 2024, 42(10): 439-444. doi: 10.12206/j.issn.2097-2024.202309059
    [6] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
    [7] 瞿文君, 白若楠, 崔力, 周琰.  基于联合库存的公立医院多院区药品采购模式分析 . 药学实践与服务, 2024, 42(7): 315-318. doi: 10.12206/j.issn.2097-2024.202401002
    [8] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202401072
    [9] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
  • 加载中
计量
  • 文章访问数:  2942
  • HTML全文浏览量:  364
  • PDF下载量:  1977
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-29
  • 修回日期:  2016-04-28

真菌多药耐药外排机制的研究进展

doi: 10.3969/j.issn.1006-0111.2016.06.002
    基金项目:  国家自然科学基金面上项目(81470158)

摘要: 真菌多药耐药性是指真菌细胞对结构不同、作用靶点不同的药物同时具有耐药性的现象,是导致临床抗真菌治疗失败的重要原因之一。本文综述了酿酒酵母、条件致病真菌白假丝酵母、光滑假丝酵母和烟曲霉中多药耐药相关转运蛋白、药物外排机制以及基因表达调控网络的研究进展,旨在为深入了解真菌多药耐药性的机制、探讨克服多药耐药性的策略和提高抗真菌药物的药效提供参考。

English Abstract

康烨, 周密, 阎澜. 真菌多药耐药外排机制的研究进展[J]. 药学实践与服务, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
引用本文: 康烨, 周密, 阎澜. 真菌多药耐药外排机制的研究进展[J]. 药学实践与服务, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
KANG Ye, ZHOU Mi, YAN Lan. Progress of the drug efflux mechanisms underlying fungi multidrug resistance[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
Citation: KANG Ye, ZHOU Mi, YAN Lan. Progress of the drug efflux mechanisms underlying fungi multidrug resistance[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
参考文献 (33)

目录

    /

    返回文章
    返回