留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

基于网络药理学和分子对接的荆防败毒散预防新型冠状病毒肺炎的活性成分研究

冯群 关永霞 黄志艳 叶士莉 程国良 姚景春 张贵民

仇雷雷, 王博, 邹帅军, 王倩倩, 张黎明. 水母胶原蛋白的提取及性能研究[J]. 药学实践与服务, 2020, 38(6): 509-515. doi: 10.12206/j.issn.1006-0111.202008078
引用本文: 冯群, 关永霞, 黄志艳, 叶士莉, 程国良, 姚景春, 张贵民. 基于网络药理学和分子对接的荆防败毒散预防新型冠状病毒肺炎的活性成分研究[J]. 药学实践与服务, 2020, 38(6): 485-491, 538. doi: 10.12206/j.issn.1006-0111.202005078
QIU Leilei, WANG Bo, ZOU Shuaijun, WANG Qianqian, ZHANG Liming. Isolation and characterization of collagen from the jellyfish Nemopilema nomurai[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 509-515. doi: 10.12206/j.issn.1006-0111.202008078
Citation: FENG Qun, GUAN Yongxia, HUANG Zhiyan, YE Shili, CHENG Guoliang, YAO Jingchun, ZHANG Guimin. Study on active ingredients of Jingfang Baidu San for preventing COVID-19 based on network pharmacology and molecular docking[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 485-491, 538. doi: 10.12206/j.issn.1006-0111.202005078

基于网络药理学和分子对接的荆防败毒散预防新型冠状病毒肺炎的活性成分研究

doi: 10.12206/j.issn.1006-0111.202005078
基金项目: 山东省重点研发计划(重大科技创新工程)项目(2017CXGC1308)
详细信息
    作者简介:

    冯 群,硕士,工程师,研究方向:中药新药研发与安全性评价,Email:fengchangqun@163.com

    通讯作者: 张贵民,研究员,研究方向:新药研发,Email:gmzhanglunan@163.com
  • 中图分类号: R285.5

Study on active ingredients of Jingfang Baidu San for preventing COVID-19 based on network pharmacology and molecular docking

  • 摘要:   目的  运用网络药理学和分子对接方法,预测荆防败毒散预防新型冠状病毒肺炎(COVID-19)的活性成分,为临床用药提供参考。  方法  通过中药系统药理学分析平台,检索荆防败毒散组方中所有药材的化学成分和作用靶点。通过Uniprot数据库校正靶点对应的基因,利用Cytoscape软件构建药材-成分-靶点网络并进行可视化处理,利用疾病数据库检索COVID-19相关的靶点,筛选出重合的靶点,通过String数据库构建蛋白-蛋白相互作用网络。通过Metascape进行GO富集分析和KEGG通路富集分析,预测其作用机制,通过分子对接,计算核心成分在预防新型冠状病毒肺炎的作用强度。  结果  限定筛选条件为口服生物利用度(OB)≥30%、类药性(DL)≥0.18,共得到荆防败毒散的159个活性成分和277个靶点,与获得的273个COVID-19相关的靶点取交集,得到55个核心靶点;对核心靶点进行GO富集分析和KEGG通路富集分析,得到GO条目1376个和136条信号通路,涉及感染性疾病、癌症、细胞进程、免疫系统、信号等通路。分子对接结果显示荆防败毒散核心成分与SARS-CoV-2 3CL水解酶、血管紧张素转化酶II(ACE2)具有较强的结合能力,结合形式有氢键、疏水作用。  结论  荆防败毒散中的活性成分能通过抑制新型冠状病毒(SARS-CoV-2)蛋白,ACE2结合,通过对多靶点、多通路的作用发挥对COVID-19的防治作用。
  • 补体系统是人体重要的免疫防御系统之一,是由30多种广泛存在于血清、组织液和细胞膜表面的蛋白质组成的,具有精密调控机制的蛋白质反应系统,其主要通过3种途径激活:经典途径、旁路途径和甘露糖结合凝集素途径。补体系统正常激活,可在靶细胞上形成膜攻击复合物,导致靶细胞的溶解,补体的这一功能在机体的免疫系统中起重要的防御和免疫监视作用,对抵御外来微生物的入侵和维持机体平衡有重要的作用。然而该系统的过度激活将释放炎性过敏毒素C3a和C5a,具有化学诱导作用的C5a能趋化嗜中性粒细胞、中核细胞和嗜酸性粒细胞,这些细胞释放蛋白酶和具有趋化作用细胞因子,进一步聚集T、B淋巴细胞和其他炎性细胞,从而促进炎症反应的发生,引起系统性红斑狼疮、类风湿性关节炎、动脉粥样硬化、肾小球肾炎等[1-2]。近年来已有研究表明[3],补体系统的激活是类风湿性关节炎中慢性滑膜炎的发病因素之一。因此,抑制补体系统的过度激活可能是治疗类风湿性关节炎的重要机制之一。

    三色片为复旦大学附属中山医院的院内制剂,由雷公藤、黄芪和丹参三味药材按1∶1∶1的比例配伍组成,在临床上用于治疗类风湿性关节炎、系统性红斑狼疮、银屑病和湿疹等结缔组织疾病。我院临床医生在长期的医疗实践中总结出来的经验方,效果显著[4]。组方中雷公藤,性味辛寒,有大毒,归肝、肾经,具有清热解毒、活血化瘀、通络止痛、杀虫止痒等功效。现代研究表明,雷公藤内酯醇对大鼠脑皮质内注射β-淀粉酶后补体C1q和C3的表达有抑制作用,表明雷公藤对补体系统有抑制作用,目前临床上广泛用于治疗类风湿性关节炎、系统性红斑狼疮、银屑病和湿疹等结缔组织疾病[5]。组方中的黄芪用于脾肺气血或中气下陷之症、卫气虚所致表虚自汗、气虚血滞导致的肢体麻木、关节痹痛等症,可联合治疗类风湿性关节炎[6]。黄芪在治疗2型糖尿病大鼠的研究中发现其能降低补体C3的水平,表明其对补体系统具有一定的调节作用[7-8]。丹参是最常用的活血化瘀中药之一,具有祛瘀止痛,养血安神的功效,现代药理学研究表明其还具有保护肝脏的功能[9],可拮抗雷公藤的肝毒性。本研究通过经典途径抗补体活性测定方法筛选出三色片醇提物的乙酸乙酯部位抗补体活性最佳,并采用UPLC-Q-TOF-MS法对该部位的化学成分进行结构表征,为三色片抗补体活性药效物质基础及治疗补体过度激活相关疾病提供科学依据。

    Tripie TOF5600+型四级杆-飞行时间串联质谱仪,配备电喷雾电离源和CDS自动校正系统(美国Applied Biosystems公司);Peak view2.2和Master view1.1数据处理系统(美国Applied Biosystems公司);LC-30A超高效液相色谱仪,包括高压输液泵,自动进样器,柱温箱和在线脱气机(日本岛津公司);KQ5200E型超声清洗器(昆山市超声仪器有限公司);甲醇、乙腈(色谱纯,德国Merck公司);甲酸(色谱纯,美国Sigma-Aldrich公司); 蒸馏水(娃哈哈集团);三色片提取物由作者自制,现样品存放于复旦大学附属中山医院药剂科(SSP2018);补体、溶血素(自制);毛蕊异黄酮(批号:ST088101),雷公藤甲素(批号:ST020501),雷公藤内酯酮(批号:ST049901),丹参酮II A(ST014601)、黄芪甲苷(ST001601)(纯度≥ 98%,均购自上海斯丹德生物技术有限公司)。

    雷公藤、黄芪和丹参三味药材按1∶1∶1配伍,其中,黄芪和丹参加6倍量的水浸泡2 h后,煎煮2次,第一次1.5 h,第二次加水4倍量煎煮1 h,煎液滤过,合并滤液并浓缩至相对密度为1.10~1.20(70 ℃),加入2倍量的乙醇,静置沉淀24 h,取上清液备用。雷公藤分别加4倍量的乙醇加热回流2次,每次1.5 h,合并提取液,滤过,加入上述备用药液,混匀,回收乙醇至无醇味,浓缩后即得三色片醇提物,经现有的质量标准检验为制备三色片制剂合格的提取物。精密称取三色片醇提物2.0 g,置于100 ml萃取瓶中,加25 ml蒸馏水溶解后,用等量的石油醚、乙酸乙酯和正丁醇进行萃取,浓缩干燥后,放冷至室温,得到三色片醇提物的石油醚部位0.36 g,乙酸乙酯部位0.42 g,正丁醇部位0.56 g和水溶性部位。

    取各极性部位样品2 mg溶于DMSO,采用BBS缓冲液稀释成不同浓度的样品,并加入临界浓度的补体(1∶80稀释的豚鼠血清),溶血素和2%绵羊红细胞(SRBC)。37 ℃水浴30 min,离心后取上清液在405 nm波长下测定吸光度(A)值。同时设置中药对照组(将等量的中药提取物加入BBS缓冲液中,用于测定中药本底A值)、补体组(取临界浓度的补体直接加入适量的BBS缓冲液、溶血素和2%SRBC,用于测定临界浓度补体所造成红细胞溶血的A值)和全溶血组(将2%SRBC加入水中使之全溶血,用于观察补体组是否达到或接近全溶血水平),并以肝素作为阳性对照组,计算溶血抑制率。以供试品浓度为横坐标(X),溶血抑制率为纵坐标(Y),计算CH50(经典途径50%抑制溶血所需供试品浓度)。溶血抑制率=1−(A中药A中药对照)/A全溶血

    2.3.1   色谱条件

    色谱柱为ACQUITY UPLC BEH C18(2.1 mm×100 mm,1.7 μm);流动相0.1%甲酸和水溶液(A)−乙腈(B);梯度洗脱:0~9 min,10%~23% B;9~13 min,23% B;13~28 min,23%~40% B;28~32 min,40%~50% B;32~37 min,50%~100% B;37~42 min,100% B;42~42.1 min,10%B;42.1~50 min,10% B;流速为0.25 ml/min,柱温为35 ℃;进样量为2 μl。

    2.3.2   质谱条件

    在正/负离子模式,离子源选择电喷雾离子化源(ESI);使用m/z 50~1250扫描范围;碰撞能量35 eV,碰撞能量叠加(35±15)eV;喷雾电压5 500 V;雾化气温度550 ℃;去簇电压100 V;雾化气和辅助气均为50 psi;气帘气25 psi;数据采集时间50 min;采用母离子触发的子离子(TOF-MS-IDA-MS/MS)扫描方式;多重质量亏损和动态背景扣除为触发二级的条件,满足该条件进行二级扫描。

    精密称取毛蕊异黄酮、雷公藤甲素、雷公藤内酯酮、丹参酮Ⅱ A和黄芪甲苷对照品1.0 mg,加甲醇2 ml,溶解,摇匀,即得各对照品溶液。

    取三色片醇提物的乙酸乙酯部位样品0.2 g,置于10 ml量瓶中,加入70%甲醇5 ml,超声处理(功率250 W,频率40 kHz)30 min,放冷至室温,70%甲醇定容至刻度,摇匀,滤过,取续滤液,即得供试品溶液。

    根据三色片中各药材化学成分研究文献,收集3种药材所含化合物成分的基本信息,包括化合物名称、分子式、精确分子量、准分子离子峰和碎片离子峰。通过精确分子量匹配,对照品的保留时间,二级谱所得到的离子碎片与文献报道进行比对,最终确定化合物的结构。

    分别对三色片醇提物的石油醚部位、乙酸乙酯部位和正丁醇部位进行经典途径的抗补体活性测定,以肝素为对照品,结果发现乙酸乙酯部位的抗补体活性最好,其抗补体活性略低于肝素钠,其次是正丁醇部位,结果见表1

    表  1  三色片提取物不同部位抗补体活性测定
    编号研究对象抗补体活性(CH50,μg/ml)
    1肝素14.4±1.2
    2三色片-石油醚部位
    3三色片-乙酸乙酯部位233.9±10.1
    4三色片-正丁醇部位344.0±14.5
    注:“—”表示该部位无抗补体活性。
    下载: 导出CSV 
    | 显示表格

    精密吸取对照品溶液和供试品溶液2 μl,采用“2.1”项下的色谱与质谱条件对样品进行分析,通过正、负离子全扫描,获得正、负离子模式下的总离子流图,见图1

    图  1  三色片提取物UPLC-Q-TOF-MS正和负离子模式下的总离子流图
    A.正离子模式;B. 负离子模式。

    通过与对照品比对,分子离子峰质谱数据解析,与参考文献比对,共鉴定出三色片醇提物乙酸乙酯部位42个化合物,结果见表2

    表  2  三色片提取物中各成分主要碎片离子及谱峰归属
    化合物
    编号
    tR/min分子式理论值(m/z)模式实测值(m/z)误差(×10−6)碎片离子(m/z化合物名称参考文献
    13.54C7H6O3139.039 0[M+H]+139.039 43.0121.028 7原儿茶醛[10]
    24.76C21H27N3O3370.212 5[M+H]+370.214 34.8249.124 6,160.112 6,95.013 3,166.086 6,100.076 2,91.054 8南蛇藤糠酰胺碱[11]
    36.63C22H22O10447.128 6[M+H]+447.130 44.2285.077 5,270.053 5,253.050 8,225.055 6,137.023 5毛蕊异黄酮-7-O-β-D-葡萄糖苷[12]
    47.04C23H29N3O2380.233 3[M+H]+380.235 14.8176.106 9,160.112 6,105.033 8,100.076 5苯代南蛇碱[11]
    59.41C9H10O5197.045 6[M-H]197.044 7−4.2179.038 3,135.044 3丹参素[10]
    69.42C9H8O4179.035 0[M-H]179.034 24.7135.044 8咖啡酸[13]
    711.16C16H12O4431.133 7[M+H]+431.136 36.1269.082 6,253.050 3,225.055 5,213.091 7,197.060 2,136.014 6,118.041 7芒柄花苷[12]
    812.71C16H12O5285.075 8[M+H]+285.077 45.7270.053 4,253.050 3,225.055 3,137.023 5毛蕊异黄酮*[12]
    912.76C17H16O5301.107 1[M+H]+301.109 06.4167.070 8,152.047 3,147.043 2,105.034 0,123.043 3astrapterocarpan[12]
    1013.06C20H24O6361.164 6[M+H]+361.166 55.5269.154 3,227.108 3,185.096 9,157.101 7,129.070 3,91.054 9雷公藤甲素*[14-15]
    1113.92C17H14O6315.086 3[M+H]+315.088 15.6300.064 7,243.065 5,167.034 2熊竹素[16]
    1218.21C18H12O7341.065 6[M+H]+341.066 93.9295.060 7,277.050 9,249.056 0丹酚酸G[17]
    1319.76C26H20O10491.098 4[M-H]491.097 0−2.9311.054 9,293.044 6,267.064 6,135.044 7丹酚酸C[18]
    1421.46C16H12O4269.080 8[M+H]+269.082 74.1253.015 3,237.052 6,225.055 5,213.092 3,136.015 9,118.041 7,197.060 2芒柄花素[12]
    1522.57C36H45NO17764.276 0[M+H]+764.278 32.9746.276 1,686.246 3,644.235 1,206.081 7,188.070 9,178.086 5aquifoliunine E-Ⅲ[14]
    1623.45C20H22O6359.148 9[M+H]+359.150 74.9267.138 0,225.019 5,183.079 9,128.061 8,91.054 3雷公藤内酯酮*[19]
    1724.01C38H47NO19822.281 5[M+H]+822.284 13.2804.275 8,204.066 2,176.071 4alatusinnine[20]
    1825.01C39H45NO19832.265 9[M+H]+832.269 03.8804.273 3,194.081 9,176.071 2hypoglaunine E[11]
    1926.14C41H68O14829.458 0[M+COOH]829.460 73.3783.457 9,621.404 3,489.357 2黄芪甲苷*[14]
    2028.19C38H47NO18806.286 6[M+H]+806.290 33.8788.279 5,686.247 0,206.082 1, 178.086 5雷公藤定宁 E[20]
    2128.65C39H45NO18816.271 0[M+H]+816.273 93.6798.261 9,756.250 9,206.081 3,178.086 1,160.075 21-去乙酰基雷公藤吉碱[11]
    2228.70C43H70O15871.468 6[M+COOH]871.470 82.5825.470 2,765.448 2,489.356 8黄芪皂苷Ⅱ[13]
    2329.09C41H47NO20874.276 4[M+H]+874.278 52.3856.269 2,846.282 9,828.272 3,674.245 1,204.065 6,176.070 7雷公藤春碱[11]
    2429.72C38H47NO18806.286 6[M+H]+806.291 23.8788.280 4,686.247 4,206.082 4peritassine A[20]
    2530.24C43H70O15871.468 6[M+COOH]871.470 32.5825.464 1,765.440 5异黄芪皂苷Ⅱ
    (异构体1)
    [16]
    2630.89C19H16O4309.112 1[M+H]+309.114 26.7281.667 0,263.106 0,235.076 7丹参醛[21]
    2731.58C43H70O15871.468 6[M+COOH]871.470 82.5825.470 2,765.448 0异黄芪皂苷Ⅱ
    (异构体2)
    [13]
    2832.12C21H20O4337.143 4[M+H]+337.142 5−2.7309.686 6丹参新醌丁[10]
    2932.16C43H49NO19884.297 2[M+H]+884.299 72.8856.304 5,674.246 0,204.663 0,176.071 2雷公藤定碱[14]
    3032.96C45H72O16913.479 1[M+COOH]913.482 43.5867.481 7,825.469 8,807.464 3,765.450 6黄芪皂苷Ⅰ[16]
    3132.99C41H47NO19858.281 5[M+H]+858.285 44.6840.275 7,798.263 8,746.269 1,738.243 5,686.248 0,206.082 5,178.087 1雷公藤晋碱[20]
    3233.04C38H47NO18806.286 6[M+H]+806.289 73.8788.278 3,686.244 4,206.082 1,728.257 0卫矛碱[20]
    3333.70C45H72O16913.479 1[M+COOH]913.484 73.8867.478 5,825.283 5,807.458 4,765.432 6异黄芪皂苷Ⅰ
    (异构体1)
    [16]
    3434.60C45H72O16913.479 1[M+COOH]913.483 33.8867.477 8,825.282 1,807.456 4,765.443 2异黄芪皂苷Ⅰ
    (异构体2)
    [16]
    3534.92C46H49NO22968.281 9[M+H]+968.286 34.5856.677 0,838.257 4,684.228 8,204.065 6,178.070 8雷公藤素B[20]
    3635.01C43H49NO18868.302 2[M+H]+868.304 62.7868.364 0,850.295 8,746.268 9,686.247 6,206.082 4,178.087 1雷公藤次碱[20]
    3735.02C41H47NO17826.291 7[M+H]+826.295 14.2808.285 3,748.264 0,206.082 2,178.086 8tripterygiumine Ⅰ[20]
    3835.49C19H20O3297.148 5[M+H]+297.145 04.8251.144 0,279.139 3,254.054 9,268.110 5,282.126 3隐丹参酮[10,17]
    3935.70C20H28O2299.201 7[M-H]299.199 6−6.7283.168 2,213.090 8,201.916 0,雷酚萜[22]
    4035.86C48H51NO18930.317 9[M+H]+930.321 33.7912.308 7,310.111 0,206.081 8,188.071 2,178.086 5,105.033 6ebenifoline E-Ⅱ[20]
    4136.81C19H18O3295.132 9[M+H]+295.134 94.0277.124 3,249.127 5,266.095 3,262.097 7,280.109 9丹参酮Ⅱ A*[10,18,23]
    4237.49C19H22O2283.169 3[M+H]+283.169 30265.098 1,240.032 2,223.106 7,195.095 8,181.101 1丹参新酮[17,21,24]
    注:*表示与对照品鉴定的化合物。
    下载: 导出CSV 
    | 显示表格
    3.2.1   黄酮类化合物结构解析

    在乙酸乙酯部位中共鉴定出6个黄酮类化合物,其中4个黄酮苷元和2个黄酮苷,苷元为黄酮、异黄酮和紫檀烷,该类化合物在正离子模式下具有较好的响应。二级质谱中黄酮苷元易发生中性丢失,形成[M+H-H2O]+、[M+H-CO]+、[M+H-CH3]+等碎片离子,如在化合物8的二级质谱中可见m/z 270.053 4和m/z 253.050 3,则为m/z 285.077 4分别脱去-CH3和CH3OH形成的[M+H-CH3]+和[M+H-CH3OH]+碎片离子峰,m/z 225.055 3是m/z 253.050 3脱去1分子的CO形成的碎片离子峰,通过对照品的保留时间和参考文献[12]质谱数据比对确定化合物8为毛蕊异黄酮,m/z 137.023 5的碎片离子峰为异黄酮母核C环发生RDA裂解所产生。黄酮苷类易脱去糖基形成较强的分子离子峰,如化合物3m/z 447.130 4)的二级质谱脱去糖基形成m/z 285.077 5的分子离子峰,并与化合物8m/z 285.077 4)的二级质谱图非常相似,说明化合物3和化合物8在结构上是相似的,但化合物3的分子量多了162(C6H10O5),通过数据库比对和参考文献[12]推测化合物3则为毛蕊异黄酮-7-O-β-D-葡萄糖苷。化合物9m/z 301.109 0)通过数据库比对发现两种候选化合物分别为astrapterocarpan和astraisoflavan,二级质谱中主要碎片离子峰为C环裂解产生的含A环和B环片段的碎片离子,其中,m/z 167.070 8为含B环的碎片离子峰且为基峰,进一步脱甲基形成m/z 152.047 3,m/z 123.043 3为含A环的碎片离子峰,进一步脱水形成m/z 105.034 0,m/z 147.043 2为母离子m/z 301.109 0脱去B环形成的碎片离子峰,根据m/z 167.070 8的碎片离子峰为基峰和含有m/z 147.043 2的碎片离子峰这两个特征,结合参考文献[12]的质谱数据,推测该化合物为astrapterocarpan,其相关裂解途径见图2

    图  2  化合物astrapterocarpan的质谱裂解规律
    3.2.2   三萜皂苷类化合物结构解析

    在乙酸乙酯部位中鉴定出7个三萜皂苷类化合物,在负离子模式下均具有较好的响应,一级质谱中产生[M+COOH]的准分子离子峰,二级质谱中产生较强的[M-H]-碎片离子峰和脱去糖基的较弱的分子离子峰。化合物19在负离子模式下产生的准分子离子峰为[M+COOH]m/z 829.458 0),二级质谱中产生m/z 783.457 9[M-H]峰,脱去1分子六碳糖(C6H10O6)形成m/z 621.404 3的碎片离子峰,m/z 489.357 2则为m/z 621.404 3进一步脱去1分子五碳糖(C5H6O5)后形成的苷元碎片离子峰,推测其苷元为9,19-环阿尔廷烷,通过对照品的保留时间,参考文献[13]的离子碎片比对确定该化合物为黄芪甲苷。

    3.2.3   生物碱类化合物结构解析

    三色片提取物中共鉴定出16个生物碱类化合物,均来自雷公藤药材,在正离子模式下具有较好的响应,一级质谱中产生[M+H]+的准分子离子峰,二级质谱发现该类型的化合物容易脱去H2O、CO和CH3COOH等中性小分子而产生碎片离子峰,多数生物碱含有吡啶二羧酸部位的碎片离子峰。如化合物23在正离子模式下产生m/z 874.278 5的准分子离子峰,二级质谱中产生脱去1分子CO的m/z 846.282 9的基峰,脱去1分子H2O的m/z 856.2692的碎片离子峰和脱去1分子HCOOH的m/z 828.272 3的碎片离子峰,m/z 674.245 1峰为m/z 846.2829脱去C5H4O3侧链和CH3COOH形成的碎片离子峰,m/z 204.065 6峰为大环开裂产生的吡啶二羧酸部分脱水产生的碎片离子,该离子进一步脱羧形成m/z 176.070 7的碎片离子,通过数据库和参考文献[11]质谱数据的比对,推测化合物23为雷公藤春碱。化合物31在正离子模式下产生m/z 858.285 4的准分子离子峰,二级质谱中产生脱去1分子H2O的m/z 840.275 7的碎片离子峰,准分子离子峰脱去1分子CH3COOH形成较强的m/z 798.263 8峰,在进一步脱去1分子CH3COOH形成738.243 5峰,准分子离子峰m/z 858.285 4脱去FuOH(C5H4O3)侧链形成的m/z 746.269 1的碎片离子峰,再进一步脱去1分子CH3COOH,形成m/z 686.248 0的碎片离子,m/z 206.082 5峰为大环开裂产生的吡啶二羧酸部分脱水产生的碎片离子,该离子进一步脱羧形成m/z 178.087 1的碎片离子,通过数据库和参考文献[20]质谱数据的比对,推测化合物31为雷公藤晋碱。雷公藤晋碱中吡啶二羧酸部分较雷公藤春碱中少一个羟基,故其易产生m/z 206.0825的碎片离子峰,并通过脱羧产生m/z 178.087 1峰。两种化合物的质谱图见图3。以雷公藤晋碱为例,解析此类化合物的裂解规律,见图4。因此得出吡啶二羧酸部分含有羟基的生物碱会产生m/z 204系列的特征碎片离子峰,不含羟基的生物碱则产生m/z 206系列的特征碎片离子峰。

    图  3  雷公藤春碱和雷公藤晋碱质谱图
    A. 雷公藤春碱的一级质谱;B. 雷公藤春碱的二级质谱;C. 雷公藤晋碱的一级质谱;D. 雷公藤晋碱的二级质谱。
    图  4  化合物雷公藤晋碱的质谱裂解规律
    3.2.4   萜类化合物结构解析

    本研究共鉴定出8种萜类化合物,其中源于丹参药材中的5种萜类成分,丹参中的萜类化合物因其结构中主要含有羟基,羰基等取代基,所以质谱碰撞中主要丢失H2O,CO和-CH3等中性分子,产生一系列的碎片离子峰。化合物41在正离子模式下产生m/z 295.134 9的[M+H]+准分子离子峰,二级质谱中产生脱去1分子甲基形成的m/z 280.1099的碎片离子峰,在此基础上有丢失1分子水形成m/z 262.097 7峰,准分子离子峰脱去1分子H2O或脱去1个-CHO形成m/z 277.124 3峰或m/z 266.095 3峰,m/z 249.127 5峰是m/z 277.124 3脱去1分子H2O形成的碎片峰,通过对照品的保留时间和参考文献[10,18,23]数据比对,鉴定该化合物为丹参酮Ⅱ A,其质谱裂解规律见图5

    图  5  化合物丹参酮II A的质谱裂解规律

    来源于雷公藤药材中的3种二萜类成分,该类化合物的二级质谱中出现一系列的脱水、脱CO和异丙基等碎片离子峰。化合物11在正离子模式下产生m/z 361.166 5的准分子离子峰,脱去2分子H2O和2分子CO形成m/z 269.154 3的碎片离子峰,m/z 227.108 3为m/z 269.154 3脱去1分子CH2CHCH3形成的碎片离子,其进一步脱1分子H2O和HCHO形成m/z 185.096 9的碎片离子,通过对照品比对和参考文献[14-15]的质谱数据,确定化合物10为雷公藤甲素。化合物18在正离子模式下产生m/z 359.148 9的准分子离子峰,脱去2分子H2O和2分子CO形成m/z 267.138 0的碎片离子峰,m/z 225.019 5为m/z 267.138 0脱去1分子CH2CHCH3形成的碎片离子,其进一步脱1分子H2O和HCHO形成m/z 183.0799的碎片离子,通过对照品比对和参考文献[19]的质谱数据,确定化合物16为雷公藤内酯酮。化合物39在负离子模式下产生m/z 299.199 6 的准分子离子峰,二级质谱中产生m/z 283.168 2的碎片离子, 提示为丢失1个-CH3后形成双键产生的碎片离子峰,A环发生RDA裂解产生m/z 213.090 8的碎片离子峰,通过数据库比对和参考文献[22]的质谱数据,推测化合物39为雷酚萜。

    3.2.5   酚酸类化合物结构解析

    在正负离子模式下共鉴定出乙酸乙酯部位中5种酚酸类成分,均来自于丹参药材,参考文献[18]报道的丹参中酚酸类成分的裂解规律发现,酚酸类化合物主要含有羰基、羧基和羟基,所以在质谱碰撞中易丢失CO、H2O和CO2的中性碎片;丹参素和咖啡酸作为基本母核而其他的水溶性酚酸类化合物大多数为这两者的聚合或缩合产物,主要为缩酚酸类的成分,在质谱碰撞中易丢失[M-H-180]和[M-H-198]中性碎片;含有羧基的单体化合物在负离子模式下会产生135[C8H7O2]和179[C9H7O4]的特征性碎片。化合物5中,在负离子模式下产生m/z 197.044 7的[M-H]准分子离子峰,二级质谱进一步产生丢失1分子H2O和1分子CO2,形成的m/z 179.038 3和m/z 135.044 3的碎片离子峰,推测出结构中含有羧基,结合其精确分子量和参考文献[10]质谱数据,推测该化合物为丹参素。化合物12中,负离子模式下产生m/z 491.097 0的[M-H]准分子离子峰,二级质谱中产生m/z 311.054 9和m/z 293.044 6的碎片离子峰,分别为[M-H-180]和[M-H-198], m/z 267.064 6峰为m/z 311.054 9脱去1分子CO2所产生,根据m/z 135.044 7峰推测结构中含有羧基,结合其精确分子量和参考文献[18]质谱数据的比较,推测该化合物为丹酚酸C。化合物1中,正离子模式下给出m/z 139.039 4的[M+H]+准分子离子峰,脱去1分子H2O形成m/z 121.028 7的碎片离子峰,通过数据库比对和参考文献[10],推测该化合物1为原儿茶醛。化合物13中,在正离子模式下产生m/z 341.066 9的[M+H]+准分子离子峰,脱去1分子CO2形成m/z 295.060 7的碎片离子峰,m/z 277.050 9和m/z 249.056 0的碎片离子峰是m/z 295.060 7峰分别脱去1分子H2O和1分子CO2形成的,通过数据库比对和参考文献[17]质谱数据,推测该化合物为丹酚酸G。

    本实验流动相考察了乙腈-水系统和甲醇-水系统,结果乙腈-水系统中化合物的分离度较好,加入甲酸可以改善峰形,有助于化合物的离子化,提高质谱的响应,最终选择乙腈-0.1%甲酸水系统作为本次研究的流动相。

    据以往文献中三色片各化学成分的研究报道,收集各药材的主要化学成分的精确分子量,碎片离子峰等信息,建立相应的化学成分数据库。通过数据库比对,对照品保留时间及参考文献中质谱数据鉴定三色片醇提物乙酸乙酯部位的化学成分。本研究共鉴定出42个化合物,其中5个是通过对照品鉴定得出,对无对照品的化合物,通过质谱的裂解特征及参考文献进行结构表征,对同分异构体应结合其在液相色谱中化合物的保留时间及质谱行为,综合对其定性鉴别。

    三色片醇提物的乙酸乙酯部位具有较强的抗补体活性,本研究采用UPLC-Q-TOF-MS法对其中的化学成分进行结构表征,结果发现该部位主要含有生物碱类,萜类,黄酮和酚酸类等化学成分。其中以来源于雷公藤药材中极性中等的生物碱类成分含量较多,这与三色片提取物的制备工艺有关,三色片中雷公藤药材采用乙醇加热回流提取的方式,而黄芪和丹参药材采用水提取醇沉淀的方式。此外,先前的研究发现广藿香中的黄酮和萜类化合物对旁路途径的补体激活具有明显的抑制作用,紫花地丁中的生物碱类成分对旁路途径也有抑制作用(AP50=0.22~0.50 g/L), 牡丹皮和毛七公的抗补体活性成分研究中发现酚羟基决定抗补体活性的存在与否,没食子酰基可改善抗补体活性,甲基则对抗补体活性不利[25-27]。通过本次研究对三色片醇提物的乙酸乙酯部位的化学成分进行了初步表征,为阐明三色片的药效物质基础提供参考依据。研究的不足之处在于,仍有部分化学成分尚未定性鉴定,含量较高的单体成分未进行体外抗补体活性的测定,未来将通过中药化学的方法获得含量较高的单体成分,并进行结构鉴定和抗补体活性测定。

  • 图  1  荆防败毒散药材-成分-靶点网络

    图  2  荆防败毒散干预COVID-19的Hub网络

    图  3  荆防败毒散成分作用靶点GO功能分析

    图  4  荆防败毒散核心靶点KEGG富集分析的前20条通路气泡图

    图  5  β-谷甾醇、丹参酮ⅡA、芒柄花黄素与Mpro和ACE2的分子对接图

    表  1  荆防败毒散中部分活性成分的基本信息

    成分名称MOL IDMWOB (%)DL药味归属
    β谷甾醇MOL000358414.7936.910.75荆芥、防风、羌活、前胡、独活、枳壳
    谷甾醇MOL000359414.7936.910.75荆芥、防风、羌活、前胡、川芎、甘草
    槲皮素MOL000098302.2546.430.28荆芥、柴胡、前胡、甘草
    异欧前胡素MOL001942270.3045.460.23防风、前胡、羌活、独活
    欧前胡素MOL001941270.3034.550.22防风、前胡、羌活、独活
    紫花前胡苷MOL004792408.4457.120.69羌活、独活、前胡
    柚皮素MOL004328272.2759.290.21枳壳、甘草
    异鼠李素MOL000354316.2849.600.31柴胡、甘草
    豆甾醇MOL000449412.7743.830.76荆芥、柴胡
    亚油酸乙酯MOL001494308.5642.000.19防风、川芎
    山奈酚MOL000422286.2541.880.24柴胡、甘草
    紫花前胡素MOL013077328.3939.270.38防风、前胡
    木犀草素MOL000006286.2536.160.25荆芥、桔梗
    甘草酚MOL002311366.3990.780.67甘草
    宽叶甘松酸MOL013098328.3987.480.37前胡
    Divaricate acidMOL011737320.3287.000.32防风
    甘草吡喃
    香豆素
    MOL004904384.4180.360.65甘草
    shinpterocarpinMOL004891322.3880.300.73甘草
    芒柄花黄素MOL000392268.2869.670.21甘草
    xambioonaMOL005018388.4954.850.87甘草
    丹参酮IIAMOL007154294.3749.890.40前胡
    异甘草酚MOL004948366.3944.700.84甘草
    去氢齿孔酸MOL000300453.7544.170.83茯苓
    7-甲氧基-2-甲基异黄酮MOL003896266.3142.560.20甘草
    美迪紫檀素-3-O-葡萄糖苷MOL004924432.4640.990.95甘草
    过氧化麦角
    甾醇
    MOL000283430.7440.360.81茯苓
    去氢茯苓酸MOL000276526.8335.110.81茯苓
    茯苓酸MOL000289528.8533.630.81茯苓
    kanzonol FMOL004988420.5432.470.89甘草
    汉黄芩素MOL000173284.2830.680.23防风
    下载: 导出CSV

    表  2  荆防败毒散中核心成分与Mpro、ACE2的结合能

    成分CAS号化学式结合能(kJ/mol)
    MproACE2
    槲皮素117-39-5C15H10O7−27.21−34.33
    山奈酚520-18-3C15H10O6−27.21−32.66
    木樨草素491-70-3C15H10O6−28.89−34.33
    汉黄芩素10-29-7C16H12O5−27.21−33.91
    7-甲氧基-2-甲基异黄酮19725-44-1C17H14O3−25.96−32.24
    β-谷甾醇83-46-5C29H50O−31.40−36.84
    丹参酮IIA568-72-9C19H18O3−30.14−36.43
    异鼠李素480-19-3C16H12O7−27.21−33.49
    芒柄花黄素485-72-3C16H12O4−29.73−30.14
    柚皮素153-18-4C15H12O5−28.47−33.49
    下载: 导出CSV
  • [1] 大汇临床研究. 重磅!钟南山院士最新千例新冠肺炎研究结果来了![EB/OL]. (2020-02-10)[2020-02-15]. https://mp.weixin.qq.com/s/SzFloKDdXQNG8fbLYqfThg.
    [2] ZHANG J J, LITVINOVA M, LIANG Y X, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China[J]. Science,2020,368(6498):1481-1486. doi:  10.1126/science.abb8001
    [3] 黄煌. 基于经方医学对新型冠状病毒肺炎的思考[J]. 南京中医药大学学报, 2020, 36(2):152-156.
    [4] 胡相萍, 张兰萍. 荆防败毒散联合阿奇霉素治疗小儿急性支气管炎临床疗效及其对患儿肺功能的动态观察[J]. 中国妇幼保健, 2016, 31(19):3975-3978.
    [5] 吴晖, 邵丹, 文丹, 等. 加减荆防败毒散治疗风寒型外感热病疗效观察及对TNF-α、IL-1β的影响[J]. 福建中医药, 2017, 48(3):11-13. doi:  10.3969/j.issn.1000-338X.2017.03.005
    [6] 邵丹, 吴晖, 文丹, 等. 加减荆防败毒散对急性上呼吸道感染患者外周血T淋巴细胞亚群的影响[J]. 福建中医药, 2014, 45(2):18-19.
    [7] 张奎, 陈红英, 马瑜. 荆防败毒散药效学研究[J]. 河南中医, 2009, 29(6):601-602.
    [8] RU J L, LI P, WANG J N, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform,2014,6:13. doi:  10.1186/1758-2946-6-13
    [9] DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res,2019,47(w1):W357-W364. doi:  10.1093/nar/gkz382
    [10] UniProt Consortium. UniProt: a worldwide hub of protein knowledge[J]. Nucleic Acids Res,2019,47:D506-D515. doi:  10.1093/nar/gky1049
    [11] ZHOU Y Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun,2019,10(1):1523. doi:  10.1038/s41467-019-09234-6
    [12] STERLING T, IRWIN J J. ZINC 15: ligand discovery for everyone[J]. J Chem Inf Model,2015,55(11):2324-2337. doi:  10.1021/acs.jcim.5b00559
    [13] GOODSELL D S, ZARDECKI C, DI COSTANZO L, et al. RCSB Protein Data Bank: Enabling biomedical research and drug discovery[J]. Protein Sci,2020,29(1):52-65. doi:  10.1002/pro.3730
    [14] CHEN C N, LIN C P, HUANG K K, et al. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3'-digallate (TF3)[J]. Evid Based Complement Alternat Med,2005,2(2):209-215. doi:  10.1093/ecam/neh081
    [15] MENACHERY V D, YOUNT B L Jr, DEBBINK K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence[J]. Nat Med,2015,21(12):1508-1513. doi:  10.1038/nm.3985
    [16] NGUYEN N T, NGUYEN T H, PHAM T N H, et al. Autodock vina adopts more accurate binding poses but Autodock4 forms better binding affinity[J]. J Chem Inf Model,2020,60(1):204-211. doi:  10.1021/acs.jcim.9b00778
    [17] HSIN K Y, MATSUOKA Y, ASAI Y, et al. systemsDock: a web server for network pharmacology-based prediction and analysis[J]. Nucleic Acids Res,2016,44(w1):W507-W513. doi:  10.1093/nar/gkw335
    [18] WANG C, HORBY P W, HAYDEN F G, et al. A novel coronavirus outbreak of global health concern[J]. Lancet,2020,395(10223):470-473. doi:  10.1016/S0140-6736(20)30185-9
    [19] 林伯良. 小柴胡汤证的研究[M]. 北京: 人民卫生出版社, 1959: 23.
    [20] 邓翠娟. 探究荆防败毒散加减配合拔罐治疗风寒感冒的临床效果[J]. 内蒙古中医药, 2017, 36(14):42-43. doi:  10.3969/j.issn.1006-0979.2017.14.043
    [21] 李丽, 陈玉婷, 曾希. RelA/p65的磷酸化调节及其与肿瘤的关系[J]. 中南医学科学杂志, 2018, 46(2):216-220.
    [22] 冯馨锐, 崔雨舒, 何志涛, 等. 肿瘤坏死因子-α的生物学功能研究进展[J]. 吉林医药学院学报, 2019, 40(1):66-68.
    [23] ZHOU P, YANG X L, WANG X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature,2020,579(7798):270-273. doi:  10.1038/s41586-020-2012-7
    [24] 齐阳, 黄爱文, 宋洪涛. 血管紧张素转换酶2抗新冠病毒药理作用机制的研究进展[J/OL]. 中国医院药学杂志: 1-5[2020-07-14]. https://kns.cnki.net/kcms/detail/42.1204.R.20200420.1846.047.html.
    [25] 张启燕, 张文会, 肖军海, 等. 3C和3CL蛋白酶及广谱抑制剂的研究进展[J]. 国际药学研究杂志, 2016, 43(3):425-430.
    [26] ZHANG L L, LIN D Z, SUN X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors[J]. Science,2020,368(6489):409-412. doi:  10.1126/science.abb3405
    [27] 张泽鑫, 吴汶丰, 谢丹, 等. 基于网络药理学和分子对接分析达原饮治疗新型冠状病毒肺炎(COVID-19)的分子靶点和机制[J/OL].中药材: 1-8[2020-05-14]. https://kns.cnki.net/kcms/detail/44.1286.R.20200511.1748.002.html.
    [28] 詹群璋, 黄英杰, 林树红, 等. 基于网络药理学和分子对接的玉屏风散预防新型冠状病毒肺炎(COVID-19)活性化合物的研究[J]. 中草药, 2020, 51(7):1731-1740. doi:  10.7501/j.issn.0253-2670.2020.07.007
  • [1] 周丽城, 欧已铭, 王园.  玉米须黄酮化学成分与药理作用研究进展 . 药学实践与服务, 2025, 43(2): 51-58. doi: 10.12206/j.issn.2097-2024.202309037
    [2] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [3] 周娇, 郑建雨, 王思真, 杨峰.  mRNA肿瘤疫苗非病毒递送系统研究进展 . 药学实践与服务, 2025, 43(3): 109-116. doi: 10.12206/j.issn.2097-2024.202410034
    [4] 闻韬, 焦广洋, 赵梦沛, 岳小强, 张凤, 陈万生.  基于UHPLC-Q-TOF/MS结合网络药理学研究柴胡桂枝干姜汤治疗慢性非萎缩性胃炎的物质基础及疗效机制 . 药学实践与服务, 2025, 43(): 1-9. doi: 10.12206/j.issn.2097-2024.202312061
    [5] 徐璐璐, 刘爱军.  丹参白术方“异病同治”冠心病、血管性痴呆、特发性膜性肾病的网络药理学作用机制研究 . 药学实践与服务, 2025, 43(3): 143-150. doi: 10.12206/j.issn.2097-2024.202312027
    [6] 张强, 李静, 刘越, 储晓琴.  基于网络药理学与分子对接技术研究制痂酊治疗Ⅱ度烧伤的作用机制 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202307014
    [7] 黄韵, 张正银, 金英, 郑怡菁, 李铁军, 孙莉莉.  耐碳青霉烯类肺炎克雷伯菌及大肠埃希菌临床分离株耐药性及耐药基因分析 . 药学实践与服务, 2024, 42(10): 439-444. doi: 10.12206/j.issn.2097-2024.202309059
    [8] 张林晨, 张小琴, 张俊平.  山楂酸药理作用的研究进展 . 药学实践与服务, 2024, 42(5): 185-189. doi: 10.12206/j.issn.2097-2024.202307052
    [9] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [10] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [11] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [12] 张成中, 朱雪艳, 卜其涛, 王宏瑞, 黄宝康.  基于网络药理学与分子对接预测鸡骨草特征图谱研究 . 药学实践与服务, 2024, 42(8): 350-358. doi: 10.12206/j.issn.2097-2024.202303048
    [13] 陈金涛, 乔子婴, 马明华, 张若曦, 王振伟, 年华.  基于网络药理学和分子对接技术研究金芪清疏颗粒治疗社区获得性肺炎的潜在机制 . 药学实践与服务, 2024, 42(11): 471-478. doi: 10.12206/j.issn.2097-2024.202312014
    [14] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
  • 期刊类型引用(11)

    1. 周超,尚丹丹,杨雯萱,代龙,姚景春. 荆防颗粒联合复方黄柏液涂剂对宫颈HPV感染的临床研究. 长春中医药大学学报. 2025(01): 55-59 . 百度学术
    2. 孟珈同,邱智东,李军鸽,王永春,唐秋竹. 荆防败毒散关键信息考证. 中成药. 2024(04): 1262-1271 . 百度学术
    3. 吕婧,高燕,赵渤年,姚景春,梁红宝. 荆防颗粒增强免疫作用机制研究. 中草药. 2024(16): 5541-5550 . 百度学术
    4. 唐勇琛,张洪平,樊玲凤,杨玉竹,张亚洲. 心脉舒一号口服液治疗心脏病分子机制网络药理学研究. 中国药业. 2024(17): 66-73 . 百度学术
    5. 尉雅洁,刘明飞,孙成宏,王伟,肖贺,程国良,陈颖. 基于网络药理学和动物实验探究荆防颗粒对高尿酸血症的治疗作用及机制. 中草药. 2023(03): 808-816 . 百度学术
    6. 张永康,孙成宏,王西双,姚景春,张贵民. 基于网络药理学和实验验证探讨荆防颗粒对自身免疫性肝炎小鼠的治疗作用及作用机制. 中草药. 2023(05): 1461-1470 . 百度学术
    7. 尉雅洁,刘明飞,周诗喆,项海鑫,孙成宏,陈颖. 荆防颗粒对氧嗪酸钾诱导小鼠高尿酸肾病的防治作用机制探讨. 山东医药. 2023(15): 1-5 . 百度学术
    8. 鲍柏屹,孙美玲,陈祥,曹兆流,唐书炳,李歆. 基于网络药理学和分子对接研究地奥心血康治疗心脏神经官能症的相关机制. 中国医药导报. 2023(17): 9-13 . 百度学术
    9. 阚雪纯,何润东,葛佳颖,吴俊,苗登顺. 基于网络药理学的续断抗骨质疏松分子作用机制研究. 南京医科大学学报(自然科学版). 2022(01): 35-40 . 百度学术
    10. 姚世霞,刘东升,牛钰婷,朱旭江,刘志浩,朱琳. 荆防颗粒质量评价. 中成药. 2022(10): 3130-3136 . 百度学术
    11. 徐庆仪,郁冬冬,黄烨炜. 临床治疗新型冠状病毒肺炎中药复方所使用高频数中药的网络药理学探讨. 海峡药学. 2021(10): 69-74 . 百度学术

    其他类型引用(4)

  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  7238
  • HTML全文浏览量:  4136
  • PDF下载量:  72
  • 被引次数: 15
出版历程
  • 收稿日期:  2020-05-26
  • 修回日期:  2020-10-16
  • 刊出日期:  2020-11-25

基于网络药理学和分子对接的荆防败毒散预防新型冠状病毒肺炎的活性成分研究

doi: 10.12206/j.issn.1006-0111.202005078
    基金项目:  山东省重点研发计划(重大科技创新工程)项目(2017CXGC1308)
    作者简介:

    冯 群,硕士,工程师,研究方向:中药新药研发与安全性评价,Email:fengchangqun@163.com

    通讯作者: 张贵民,研究员,研究方向:新药研发,Email:gmzhanglunan@163.com
  • 中图分类号: R285.5

摘要:   目的  运用网络药理学和分子对接方法,预测荆防败毒散预防新型冠状病毒肺炎(COVID-19)的活性成分,为临床用药提供参考。  方法  通过中药系统药理学分析平台,检索荆防败毒散组方中所有药材的化学成分和作用靶点。通过Uniprot数据库校正靶点对应的基因,利用Cytoscape软件构建药材-成分-靶点网络并进行可视化处理,利用疾病数据库检索COVID-19相关的靶点,筛选出重合的靶点,通过String数据库构建蛋白-蛋白相互作用网络。通过Metascape进行GO富集分析和KEGG通路富集分析,预测其作用机制,通过分子对接,计算核心成分在预防新型冠状病毒肺炎的作用强度。  结果  限定筛选条件为口服生物利用度(OB)≥30%、类药性(DL)≥0.18,共得到荆防败毒散的159个活性成分和277个靶点,与获得的273个COVID-19相关的靶点取交集,得到55个核心靶点;对核心靶点进行GO富集分析和KEGG通路富集分析,得到GO条目1376个和136条信号通路,涉及感染性疾病、癌症、细胞进程、免疫系统、信号等通路。分子对接结果显示荆防败毒散核心成分与SARS-CoV-2 3CL水解酶、血管紧张素转化酶II(ACE2)具有较强的结合能力,结合形式有氢键、疏水作用。  结论  荆防败毒散中的活性成分能通过抑制新型冠状病毒(SARS-CoV-2)蛋白,ACE2结合,通过对多靶点、多通路的作用发挥对COVID-19的防治作用。

English Abstract

仇雷雷, 王博, 邹帅军, 王倩倩, 张黎明. 水母胶原蛋白的提取及性能研究[J]. 药学实践与服务, 2020, 38(6): 509-515. doi: 10.12206/j.issn.1006-0111.202008078
引用本文: 冯群, 关永霞, 黄志艳, 叶士莉, 程国良, 姚景春, 张贵民. 基于网络药理学和分子对接的荆防败毒散预防新型冠状病毒肺炎的活性成分研究[J]. 药学实践与服务, 2020, 38(6): 485-491, 538. doi: 10.12206/j.issn.1006-0111.202005078
QIU Leilei, WANG Bo, ZOU Shuaijun, WANG Qianqian, ZHANG Liming. Isolation and characterization of collagen from the jellyfish Nemopilema nomurai[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 509-515. doi: 10.12206/j.issn.1006-0111.202008078
Citation: FENG Qun, GUAN Yongxia, HUANG Zhiyan, YE Shili, CHENG Guoliang, YAO Jingchun, ZHANG Guimin. Study on active ingredients of Jingfang Baidu San for preventing COVID-19 based on network pharmacology and molecular docking[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 485-491, 538. doi: 10.12206/j.issn.1006-0111.202005078
  • 2019年12月,武汉市出现多例不明原因的病毒性肺炎病例,病例临床表现主要为发热、咳嗽,少数病人腹泻、呕吐、呼吸困难,胸片呈双肺浸润性病灶[1]。2020年2月11日,世界卫生组织将该病命名为新型冠状病毒肺炎(corona virus disease 2019,COVID-19),并称引起该病的病毒为SARS-CoV-2,与成年人相比,儿童更不易感染该病毒,65岁以上老年人更易受感染[2]。目前全球疫情愈演愈烈,国内用了两个多月控制住疫情,中医药做出了巨大贡献,但部分地区输入性病例和无症状感染者不断增加,寻找相应的群体性配方,是当前一项十分紧迫的研究任务。据古文献记载,加上黄煌教授临床经验和近期的个案报道,建议可以采用两首古代相传的治疗时令病的经验成方——荆防败毒散和十神汤,作为群体性预防用方[3]

    荆防败毒散,出自《摄生众妙方》,由荆芥、防风、羌活、独活、柴胡、前胡、川芎、枳壳、茯苓、桔梗、甘草等十一味中药组成,已上市的中成药包括荆防颗粒、荆防合剂。临床研究表明,荆防败毒散能缓解发热、咳嗽、喘息与肺部啰音等作用,调节机体炎症因子和细胞免疫状况,增强机体的免疫功能[4-6]。现代药理学研究证明其具有解热、镇痛和抗炎的作用[7]

    本文通过网络药理学筛选出荆防败毒散作用靶点,并进行聚类分析,预测荆防败毒散中核心活性成分,进而运用分析软件对药材-成分-靶点进行分子对接及信号通路分析,并预测其治疗COVID-19的作用机制,为荆防败毒散用于预防及治疗COVID-19的可能性提供理论参考。

    • 借助中药系统药理分析平台(TCMSP,http://tcmspw.com/tcmsp.php)[8],分别以荆芥、防风、羌活、独活、柴胡、前胡、川芎、枳壳、茯苓、桔梗、甘草为关键词搜索荆防败毒散中的成分。本研究结合口服生物利用度(OB≥30%)和类药性(DL≥0.18),筛选收集到的化学成分,并结合《中国药典》2015年版中药物的含量测定项对已筛选的成分进行补充,最终建立荆防败毒散的成分库。

    • 经OB和DL筛选合格的成分,在TCMSP数据库对其成分靶点进行收录。对未在TCMSP中收录靶点的成分,在PubChem查询成分对应的Canonical SMILES序列,并利用此序列在SwissTarget数据库[9](http://www.swisstargetprediction.ch/)中对该成分的靶点进行预测,收集预测结果中的靶标蛋白基因名称。最后对收集的所有靶点在Unitprot数据库[10](http://www.Unitprot.org/)输入蛋白名称并限定来源为Homo sapiens,获取官方基因名作为荆防败毒散的靶点库。通过Cytoscape 3.6.1软件,构建荆防败毒散药材-成分-靶点网络,分析成分和靶点网络。

    • 在CTD、NCBI和GeneCards数据库中,以“COVID-19”、“novel coronavirus pneumonia”等检索词检索,检索时间为2020年7月13日。将检索结果合并、去重,获取新冠肺炎疾病相关基因,并把相关基因编码的蛋白质作为药物治疗的潜在作用靶点。

    • 将荆防败毒散成分的靶点与COVID-19靶点分别导入String数据库,获取荆防败毒散成分靶点和COVID-19靶点的蛋白-蛋白相互作用(PPI)关系,通过Cytoscape软件Merge功能,取两者交集,挖掘关键靶点网络。

    • 为了进一步了解上述筛选出的靶标蛋白基因的功能及在信号通路中的作用,将筛选得到的作用靶点导入Metascape数据库[11](https://metascape.org/),通过输入靶基因名称列表并限定物种为人,进行GO(gene ontology)生物过程(BP,Biological Process)、细胞组成(CC,cellular component)、分子功能(MF,molecular function)富集分析和KEGG(kyoto encyclopedia of genes and genomes)信号通路富集分析,并利用R 4.0.0软件将其结果可视化。

    • 从ZINC数据库[12](http://zinc.docking.org/)下载Degree值前10成分的mol2格式文件,用Autodock Tool软件打开该成分,使其能量最小化并判定成分的Root、选定可扭转的键,保存为*pdbqt格式文件。从PDB数据库[13](https://www.rcsb.org/)下载SARS-CoV-2 3CL水解酶(Mpro,PDB ID: 6LU7)和血管紧张素转化酶II(ACE2,PDB ID: 1R42)的3D结构PDB格式文件[14-15],运用Pymol软件移除靶蛋白中的配体和非蛋白分子(如水分子),再保存为PDB格式文件。随后用Autodock Tool软件打开的PDB文件,加氢、计算电荷并给蛋白添加原子类型(Assign AD4 type),将其保存为*pdbqt格式文件[16]

      运用Autodock Vina将成分和受体对接。结合能小于0说明配体与受体可以自发结合,目前对于活性分子的靶点筛选尚无统一标准,本文根据结合能进行排序,结合能数值的绝对值越大,对接结果较好,该成分可视为荆防败毒散预防COVID-19的潜在活性成分。

    • 从TCMSP数据库中搜索荆防败毒散各味药的成分,并依据OB≥30%及DL≥0.18要求,得到最终选定的结果为187个不同的成分(28个无已知靶点),其中荆芥11个、防风18个、羌活15个、独活9个、柴胡17个、前胡24个、川芎7个、枳壳5个、茯苓15个、桔梗7个、甘草92个。筛选后的荆防败毒散中部分活性成分的基本信息见表1

      表 1  荆防败毒散中部分活性成分的基本信息

      成分名称MOL IDMWOB (%)DL药味归属
      β谷甾醇MOL000358414.7936.910.75荆芥、防风、羌活、前胡、独活、枳壳
      谷甾醇MOL000359414.7936.910.75荆芥、防风、羌活、前胡、川芎、甘草
      槲皮素MOL000098302.2546.430.28荆芥、柴胡、前胡、甘草
      异欧前胡素MOL001942270.3045.460.23防风、前胡、羌活、独活
      欧前胡素MOL001941270.3034.550.22防风、前胡、羌活、独活
      紫花前胡苷MOL004792408.4457.120.69羌活、独活、前胡
      柚皮素MOL004328272.2759.290.21枳壳、甘草
      异鼠李素MOL000354316.2849.600.31柴胡、甘草
      豆甾醇MOL000449412.7743.830.76荆芥、柴胡
      亚油酸乙酯MOL001494308.5642.000.19防风、川芎
      山奈酚MOL000422286.2541.880.24柴胡、甘草
      紫花前胡素MOL013077328.3939.270.38防风、前胡
      木犀草素MOL000006286.2536.160.25荆芥、桔梗
      甘草酚MOL002311366.3990.780.67甘草
      宽叶甘松酸MOL013098328.3987.480.37前胡
      Divaricate acidMOL011737320.3287.000.32防风
      甘草吡喃
      香豆素
      MOL004904384.4180.360.65甘草
      shinpterocarpinMOL004891322.3880.300.73甘草
      芒柄花黄素MOL000392268.2869.670.21甘草
      xambioonaMOL005018388.4954.850.87甘草
      丹参酮IIAMOL007154294.3749.890.40前胡
      异甘草酚MOL004948366.3944.700.84甘草
      去氢齿孔酸MOL000300453.7544.170.83茯苓
      7-甲氧基-2-甲基异黄酮MOL003896266.3142.560.20甘草
      美迪紫檀素-3-O-葡萄糖苷MOL004924432.4640.990.95甘草
      过氧化麦角
      甾醇
      MOL000283430.7440.360.81茯苓
      去氢茯苓酸MOL000276526.8335.110.81茯苓
      茯苓酸MOL000289528.8533.630.81茯苓
      kanzonol FMOL004988420.5432.470.89甘草
      汉黄芩素MOL000173284.2830.680.23防风
    • 利用Cytoscape软件进行“荆防败毒散药材-成分-靶点”网络的构建,网络共包括447个节点(11种药材节点、159个成分节点、277个靶点节点)和2718条边,如图1所示,其中形状“△”代表药材,“〇”代表成分,“◇”代表基因,每条边则表示药材中所含成分及成分与靶点相互作用关系。性状的大小代表Degree值的大小。按照Degree值,排名前10位的成分分别是槲皮素、山奈酚、木樨草素、汉黄芩素、β-谷甾醇、7-甲氧基-2甲基异黄酮、丹参酮IIA、柚皮素、芒柄花黄素、异鼠李素。

      图  1  荆防败毒散药材-成分-靶点网络

    • 在数据库中检索并筛选得到COVID-19相关的273个靶点,将273个疾病靶点和277个荆防败毒散活性成分的作用靶点导入String数据库,得到靶点PPI关系,利用Cytoscape软件将两者进行Merge取交集处理,得到包含55个靶点和766条边的Hub网络,见图2。按照Degree值从高到低,Hub网络中排名前10位的靶点分别为MAPK3、TNF、IL6、CASP3、TP53、MAPK8、MAPK1、IL10、CCL2、MAPK14。

      图  2  荆防败毒散干预COVID-19的Hub网络

    • 通过Metascape数据库进行的GO功能富集分析得到GO条目1376个(P<0.01),其中BP条目1304个,包括细胞因子和凋亡信号、刺激反应、多生物过程、免疫过程、细胞代谢、生物进程调控等;CC条目19个,包括细胞膜、细胞器膜、基质、转录因子等;MF条目53个,包括酶活性和酶结合、细胞因子活性和结合能力、转录因子结合、蛋白特异性结合等各类别分析中排名前20位的条目,见图3

      图  3  荆防败毒散成分作用靶点GO功能分析

      KEGG通路富集分析筛选得到136条(P<0.01)通路,涉及与寄生虫、真菌、病毒感染引起的疾病通路有22条(如朊病毒、甲型流感、人类嗜T淋巴细胞病毒I型感染、丙肝、肺结核、疟疾、百日咳等)、癌症相关的通路17条(如非小细胞肺癌、小细胞肺癌、黑色素瘤、癌症中碳代谢、转录失调等)、细胞进程、免疫系统进程、信号通路等。选Count值较大的前20条通路进行可视化,结果见图4

      图  4  荆防败毒散核心靶点KEGG富集分析的前20条通路气泡图

    • 将荆防败毒散中排序前10的核心成分分别与Mpro、ACE2受体进行分子对接。一般认为配体与受体结合的构象稳定时能量越低,发生的作用可能性越大,结合能≤–5.0 kJ/mol作为筛选标准,结合能≤–20.93 kJ/mol时则视为成分与靶点有较好的活性,结合能≤–29.336 kJ/mol时则结合活性强烈[17]。分子对接结果显示,筛选出的荆防败毒散核心成分与Mpro结合能远小于–20.93 kJ/mol,与ACE2受体结合能远小于–29.336 kJ/mol(见表2)。选择结合能均小于–29.336 kJ/mol的β-谷甾醇、丹参酮IIA、芒柄花黄素,对其与Mpro、ACE2的结合形式进行分析,丹参酮IIA可与Mpro的110位谷氨酰胺(GLN)和ACE2的158位络氨酸(TYR)形成氢键(键长20 nm和22 nm);芒柄花黄素可与Mpro的131位精氨酸(ARG)和287位亮氨酸(LEU)分别形成氢键(键长27 nm和19 nm),与ACE2的615位天冬氨酸(ASP)形成氢键(键长22 nm)。氢键、疏水作用可能是荆防败毒散成分与两个受体主要的结合形式,结果见图5。分子对接结果表明荆防败毒散中活性成分与Mpro、ACE2结合活性较强,与后者的结合能力优于前者。

      表 2  荆防败毒散中核心成分与Mpro、ACE2的结合能

      成分CAS号化学式结合能(kJ/mol)
      MproACE2
      槲皮素117-39-5C15H10O7−27.21−34.33
      山奈酚520-18-3C15H10O6−27.21−32.66
      木樨草素491-70-3C15H10O6−28.89−34.33
      汉黄芩素10-29-7C16H12O5−27.21−33.91
      7-甲氧基-2-甲基异黄酮19725-44-1C17H14O3−25.96−32.24
      β-谷甾醇83-46-5C29H50O−31.40−36.84
      丹参酮IIA568-72-9C19H18O3−30.14−36.43
      异鼠李素480-19-3C16H12O7−27.21−33.49
      芒柄花黄素485-72-3C16H12O4−29.73−30.14
      柚皮素153-18-4C15H12O5−28.47−33.49

      图  5  β-谷甾醇、丹参酮ⅡA、芒柄花黄素与Mpro和ACE2的分子对接图

    • 突如其来的疫情给人类带来巨大挑战,人类必须努力了解疾病特点,尽快寻找到控制措施[18]。荆防败毒散,由人参败毒散去人参加荆芥、防风而成。以荆芥、防风,羌活、独活发汗解表,开泄皮毛,使风寒之邪随汗而解,为通治一身风寒湿邪的常用组合。柴胡、枳壳、桔梗调畅气机,川芎行血合营,羌活、茯苓化痰渗湿,三组合用,意在解表祛邪与疏通气血津液。甘草调和药性,祛风散寒之力较强,宜于外感风寒湿邪较重者。荆防败毒散治退热效果极佳,用于流行性感冒见效快[19-20]。新冠肺炎疫情属于寒湿疫。因此,基于辨证论治的原则,荆防败毒散可作为群体性预防用药的选择,并对初期轻症(寒湿证)的新冠肺炎有一定治疗效果。

      根据KEGG分析,得到136条通路,包括感染性疾病通路、癌症通路、细胞进程通路、免疫系统通路、信号通路等。KEGG前20条通路中,频率最高的靶点为RELA、MAPK1、MAPK3、TNF、IL6。RELA在调节对感染的免疫应答中起关键作用,而且其磷酸化调节作用可抑制肿瘤的发生[21]。丝裂原活化蛋白激酶(MAPK)是信号从细胞表面传导到细胞核内部的重要传递者。TNF在抗肿瘤、抗感染、免疫、炎症等多种生理病理过程中发挥着关键的作用[22]。结果表明荆防败毒散呈现出中药多成分-多靶点-多途径协同作用的特点,通过对上述靶点的作用,调节感染类疾病通路、免疫损伤性、炎症通路,起到防治COVID-19的作用。

      ACE2是SARS-CoV和SARS-CoV-2的宿主细胞受体,SARS-CoV-2 通过表达的S-蛋白与人体ACE2结合,导致病毒入侵而致病,这可作为治疗COVID-19的突破口[23-24]。Mpro是单正链RNA病毒前体多聚蛋白水解酶核心部分,将宿主细胞内的病毒RNA翻译成蛋白以产生子代毒,在RNA复制、逆转录过程中具有重要的作用[25-26],抑制Mpro活性将能阻止病毒的感染和复制。通过分子对接,这10个成分与SARS-CoV-2 3CL水解酶的结合能远小于−20.93 kJ/mol,与ACE2受体的结合能远小于−29.336 kJ/mol,与二者结合最好的成分均为β-谷甾醇和丹参酮IIA,结合形式包括氢键、疏水作用。此外,槲皮素、山柰酚、异鼠李素也具有较强的结合能力[27-28]。表明荆防败毒散核心成分与COVID-19相关蛋白有较强的结合能力。

      基于上述研究,荆防败毒散对肺部疾病有一定的保护治疗作用,能提高机体免疫力,对COVID-19具有潜在的防治作用,可作为群体性预防用药以及发病初期的治疗。鉴于网络药理学和分子对接的局限性,荆防败毒散防治COVID-19的效果有待临床进一步验证。

参考文献 (28)

目录

/

返回文章
返回