-
补骨脂(Psoralea corylifolia Linn)为豆科植物,以干燥成熟果实入药,性温,味辛、苦,归肾、脾经。有温肾助阳,纳气平喘,温脾止泻等功效,主治骨质疏松症、骨软化症、关节痛、哮喘、白癜风、银屑病、遗尿尿频、肾虚作喘等疾病,在中医临床治疗中被广泛应用于脾肾阳虚的治疗,但长期或者超量使用补骨脂及其制剂可导致肝损伤,临床表现主要为皮肤巩膜黄染、尿黄、乏力和食欲不振,同时伴有丙氨酸转移酶(ALT)、总胆红素(T-Bil)和直接胆红素(D-Bil)等生化指标不同程度升高,肝脏肿大或肝脏弥漫性病变。实验研究也表明,长期或大剂量服用补骨脂可引起大鼠不同程度的肝损伤。然而,补骨脂肝损伤成分和潜在机制至今尚未得到阐明。在本研究中,我们通过生物信息学工具评价补骨脂诱导肝损伤的潜在作用机制,为补骨脂肝损伤的临床和基础研究提供参考依据。
-
从TCMIP数据库中共筛选出的32个相关化合物,其中补骨脂素、补骨脂酚、补骨脂查尔酮、异补骨脂素和甲氧补骨脂素等22个符合Lipinski5规则,而补骨脂素、异补骨脂素和补骨脂酚为补骨脂主要成分。因此,上述22个化合物全部纳入进一步研究,化合物名称及详细信息见表1。
表 1 补骨脂成分及相关信息
化合物 相对分子
质量AlogP 氢键供
体数氢键受
体数Pub
ChemID双羟异补骨脂定 368.30 2.0 3 7 5316096 补骨脂酚 338.40 2.8 2 5 5320772 补骨脂定 336.30 4.7 2 5 5281806 异新补骨脂查尔酮 298.29 3.0 2 5 5318608 异补骨脂二氢黄酮 324.40 4.1 2 4 193679 补骨脂异黄酮醛 282.25 2.5 2 5 44257227 槐属香豆雌烷 A 334.30 4.0 1 5 14630492 补骨脂呋喃查尔酮 340.40 3.5 3 5 6476086 新补骨脂查尔酮 298.29 3.0 2 5 5320052 补骨脂二氢黄酮甲醚 338.40 4.4 1 4 10337211 补骨脂香豆雌烷B 352.30 3.1 2 6 5321820 补骨脂乙素 324.40 5.1 3 4 5281255 新补骨脂异黄酮 322.40 4.4 2 4 5320053 补骨脂查尔酮 324.40 5.1 3 4 6450879 补骨脂色烯素 322.40 4.5 2 4 5321800 异补骨脂定 336.30 4.1 1 5 12304285 甲氧补骨脂素 216.19 1.9 0 4 4114 补骨脂呋喃香豆精 186.16 2.3 0 3 3083848 异补骨脂素 186.16 2.0 0 3 10658 补骨脂素 186.16 2.3 0 3 6199 补骨脂香豆雌烷A 353.30 3.1 2 6 5321811 补骨脂定-2',3'-环氧化物 352.30 3.3 2 6 44257529 -
将补骨脂22个成分输入Pharm Mapper中,得到所有潜在蛋白质靶点,经UniProt转化为基因ID,并与Disgenet数据库中8类药物性肝损伤挖掘的疾病基因ID根据匹配度由高到低进行排序,去除重复后,匹配共得到31个补骨脂潜在的肝损伤作用靶点,见表2。
表 2 补骨脂成分潜在肝损伤作用靶点
序号 Uniprot ID 基因靶点 蛋白靶点 1 P28161 GSTM2 glutathione S-transferase Mu 2 2 O75469 NR1I2 nuclear receptor subfamily 1
group I member 23 P02768 ALB serum albumin 4 P11712 CYP2C9 cytochrome P450 2C9 5 P09211 GSTP1 glutathione S-transferase P 6 P04179 SOD2 superoxide dismutase [Mn], mitochondrial 7 Q96RI1 NR1H4 bile acid receptor 8 P05089 ARG1 arginase-1 9 P00374 DHFR dihydrofolate reductase 10 P02774 GC vitamin D-binding protein 11 P00390 GSR glutathione reductase, mitochondrial 12 P09601 HMOX1 heme oxygenase 1 13 P05019 IGF1 insulin-like growth factor I 14 P80188 LCN2 neutrophil gelatinase-associated lipocalin 15 P17931 LGALS3 galectin-3 16 P08253 MMP2 72 000 type IV collagenase 17 P00491 PNP purine nucleoside phosphorylase 18 Q08257 CRYZ quinone oxidoreductase 19 Q07869 PPARA peroxisome proliferator-activated receptor alpha 20 Q00796 SORD sorbitol dehydrogenase 21 P49888 SULT1E1 sulfotransferase 1E1 22 O00204 SULT2B1 sulfotransferase 2B1 23 P36897 TGFBR1 TGF-beta receptor type-1 24 P02766 TTR transthyretin 25 Q14994 NR1I3 nuclear receptor subfamily 1
group I member 326 Q13133 NR1H3 oxysterols receptor LXR-alpha 27 P37231 PPARG peroxisome proliferator-activated receptor gamma 28 O60760 HPGDS hematopoietic prostaglandin D synthase 29 P04035 HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase 30 P06702 S100A9 protein S100-A9 31 P09488 GSTM1 glutathione S-transferase Mu 1 -
采用Cytoscape软件的Merge功能构建补骨脂成分-靶点-信号通路-肝损伤网络模型,如图1所示(绿色椭圆代表靶点,黄色椭圆代表成分,粉红色菱形代表疾病,紫色椭圆表示补骨脂),节点代表活性或靶点,边代表成分、作用靶点和疾病间的相互关联,其中共有60个节点,327个边。节点的大小与度的大小呈正比关系,节点越大表示该节点的度越大。依据拓扑分析,13个成分的度值大于10,分别为补骨脂素、补骨脂定、补骨脂酚、异新补骨脂查尔酮、异补骨脂黄酮、补骨脂异黄酮醛、异补骨脂定、双羟异补骨脂定、新补骨脂查尔酮、补骨脂二氢黄酮甲醚、补骨脂乙素、补骨脂查尔酮、新补骨脂异黄酮;具有较高度值的靶点蛋白有血清白蛋白(ALB)、谷胱甘肽S-转移酶P(GSTP1)、运甲状腺素蛋白(TTR)和过氧化物酶体增殖物激活受体γ(PPARG)。
采用DAVID在线富集平台进行生物学功能分析,获得103个GO注释(黄色表示生物学过程、绿色表示细胞组成、蓝色表示分子功能)。GO分析表明,靶蛋白大多富集于RNA聚合酶Ⅱ启动子启动转录、类固醇激素介导的信号通路、信号转录、DNA模板转录正调控、RNA聚合酶Ⅱ启动子转录的正调控、氧化还原反应、固有免疫应答、细胞对脂多糖(LPS)的反应、细胞氧化解毒等生物学过程,见图2。此外,KEGG富集分析表明,5条通路(P<0.05)受补骨脂的影响,包括化学物致癌、AMPK信号通路、PPAR信号通路、肝药酶P450(CYP)有害物代谢和谷胱甘肽代谢通路等,结果见图3。
Mechanism of Psoralea corylifolia Linn on liver injury based on bioinformatics
-
摘要:
目的 基于生物信息学技术建立补骨脂成分-靶点-信号通路-肝损伤网络,探讨补骨脂导致肝损伤的作用机制。 方法 通过TCMIP数据库收集补骨脂成分以及肝损伤有关的靶点,依据反向药效团匹配方法预测补骨脂成分的作用靶点;采用Cytoscape 构建补骨脂成分-靶点网络,对补骨脂作用靶点构建网络模型进行GO与KEGG富集分析。 结果 补骨脂中有22个成分作用于31个肝损伤靶点蛋白,血清白蛋白(ALB)、谷胱甘肽S-转移酶P(GSTP1)、运甲状腺素蛋白(TTR)和过氧化物酶体增殖物激活受体γ(PPARG)可能是关键节点蛋白。KEGG分析遴选出化学物致癌、AMPK、PPAR信号、P450代谢和谷胱甘肽等信号通路。 结论 补骨脂可能是作用于ALB、GSTP1、TTR与PPARG等靶点并调控五类信号通路导致肝损伤。 Abstract:Objective To explore the mechanism of Psoralea corylifolia Linn (PCL) on liver injury by establishing the biological function and pathway network of PCL components, targets and protein interactions based on bioinformatics. Methods The components of PCL and potential liver-injury related targets were collected from TCMIP database. The targets of PCL were predicted by the reverse pharmacophore matching method. Cytoscape software was applied for the construction of active components-targets network map. Protein-protein interaction network was constructed by STRING database. Gene ontology functional enrichment analysis and KEGG pathway enrichment analysis were conducted to predict the liver injury mechanism of PCL. Results 22 components were identified from PCL with the corresponding 31 potential liver injury targets, mainly on serum albumin (ALB), glutathione S-transferase P (GSTP1), transthyretin (TTR) and peroxisome proliferator activated receptor gamma (PPARG) by PPI network analysis. The chemical carcinogenesis, adenosine 5 '- monophosphate activated protein kinase (AMPK) signal, PPAR signal, liver enzyme P450 and its harmful substance metabolism, glutathione metabolism and other signaling pathways were selected by KEGG analysis. Conclusion The active components of PCL may target on ALB, GSTP1, TTR and PPARG to regulate AMPK and PPAR signaling pathways, leading to liver injury. -
Key words:
- Psoralea corylifolia Linn /
- bioinformatics /
- liver injury
-
表 1 补骨脂成分及相关信息
化合物 相对分子
质量AlogP 氢键供
体数氢键受
体数Pub
ChemID双羟异补骨脂定 368.30 2.0 3 7 5316096 补骨脂酚 338.40 2.8 2 5 5320772 补骨脂定 336.30 4.7 2 5 5281806 异新补骨脂查尔酮 298.29 3.0 2 5 5318608 异补骨脂二氢黄酮 324.40 4.1 2 4 193679 补骨脂异黄酮醛 282.25 2.5 2 5 44257227 槐属香豆雌烷 A 334.30 4.0 1 5 14630492 补骨脂呋喃查尔酮 340.40 3.5 3 5 6476086 新补骨脂查尔酮 298.29 3.0 2 5 5320052 补骨脂二氢黄酮甲醚 338.40 4.4 1 4 10337211 补骨脂香豆雌烷B 352.30 3.1 2 6 5321820 补骨脂乙素 324.40 5.1 3 4 5281255 新补骨脂异黄酮 322.40 4.4 2 4 5320053 补骨脂查尔酮 324.40 5.1 3 4 6450879 补骨脂色烯素 322.40 4.5 2 4 5321800 异补骨脂定 336.30 4.1 1 5 12304285 甲氧补骨脂素 216.19 1.9 0 4 4114 补骨脂呋喃香豆精 186.16 2.3 0 3 3083848 异补骨脂素 186.16 2.0 0 3 10658 补骨脂素 186.16 2.3 0 3 6199 补骨脂香豆雌烷A 353.30 3.1 2 6 5321811 补骨脂定-2',3'-环氧化物 352.30 3.3 2 6 44257529 表 2 补骨脂成分潜在肝损伤作用靶点
序号 Uniprot ID 基因靶点 蛋白靶点 1 P28161 GSTM2 glutathione S-transferase Mu 2 2 O75469 NR1I2 nuclear receptor subfamily 1
group I member 23 P02768 ALB serum albumin 4 P11712 CYP2C9 cytochrome P450 2C9 5 P09211 GSTP1 glutathione S-transferase P 6 P04179 SOD2 superoxide dismutase [Mn], mitochondrial 7 Q96RI1 NR1H4 bile acid receptor 8 P05089 ARG1 arginase-1 9 P00374 DHFR dihydrofolate reductase 10 P02774 GC vitamin D-binding protein 11 P00390 GSR glutathione reductase, mitochondrial 12 P09601 HMOX1 heme oxygenase 1 13 P05019 IGF1 insulin-like growth factor I 14 P80188 LCN2 neutrophil gelatinase-associated lipocalin 15 P17931 LGALS3 galectin-3 16 P08253 MMP2 72 000 type IV collagenase 17 P00491 PNP purine nucleoside phosphorylase 18 Q08257 CRYZ quinone oxidoreductase 19 Q07869 PPARA peroxisome proliferator-activated receptor alpha 20 Q00796 SORD sorbitol dehydrogenase 21 P49888 SULT1E1 sulfotransferase 1E1 22 O00204 SULT2B1 sulfotransferase 2B1 23 P36897 TGFBR1 TGF-beta receptor type-1 24 P02766 TTR transthyretin 25 Q14994 NR1I3 nuclear receptor subfamily 1
group I member 326 Q13133 NR1H3 oxysterols receptor LXR-alpha 27 P37231 PPARG peroxisome proliferator-activated receptor gamma 28 O60760 HPGDS hematopoietic prostaglandin D synthase 29 P04035 HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase 30 P06702 S100A9 protein S100-A9 31 P09488 GSTM1 glutathione S-transferase Mu 1 -
[1] 朱星宇, 赵根华, 高倩倩, 等. 对照提取物法测定补骨脂饮片中7种成分含量[J]. 中国实验方剂学杂志, 2017, 23(15):85-91. [2] 颜冬梅, 高秀梅. 补骨脂化学成分研究进展[J]. 辽宁中医药大学学报, 2012, 14(9):96-99. [3] 樊玲, 秋新松, 高阳, 等. HPLC法同时测定中药补骨脂中10种成分的含量[J]. 齐齐哈尔医学院学报, 2018, 39(16):1928-1931. doi: 10.3969/j.issn.1002-1256.2018.16.031 [4] WANG Y F, WU B, YANG J, et al. A rapid method for the analysis of ten compounds in Psoralea corylifolia L. by UPLC[J]. Chromatographia,2009,70(1-2):199-204. doi: 10.1365/s10337-009-1118-8 [5] 邱蓉丽, 李璘, 乐巍. 补骨脂的化学成分与药理作用研究进展[J]. 中药材, 2010, 33(10):1656-1659. [6] 吴疆, 魏巍, 袁永兵. 补骨脂的化学成分和药理作用研究进展[J]. 药物评价研究, 2011, 34(3):217-219. [7] 王安红, 周昆, 柴丽娟. 补骨脂素对HepG2细胞BSEP、NTCP的影响[J]. 时珍国医国药, 2015, 26(7):1563-1565. [8] PAULI-MAGNUS C, MEIER P J. Hepatobiliary transporters and drug-induced cholestasis[J]. Hepatology,2006,44(4):778-787. doi: 10.1002/hep.21359 [9] 张新颖, 毛景东, 杨晓燕, 等. AMPK/mTOR信号通路的研究进展[J]. 微生物学杂志, 2019, 39(3):109-116. doi: 10.3969/j.issn.1005-7021.2019.03.015 [10] 张玥, 毕亚男, 袁晓美, 等. 基于靶器官的补骨脂肝毒性成分探讨[J]. 时珍国医国药, 2017, 28(8):1844-1847. [11] 周昆, 毕亚男, 史红. 异补骨脂素抑制MRP2、MRP3所致的HepG2细胞内胆汁酸蓄积和毒性[J]. 中国药理学通报, 2015, 31(8):1112-1116. doi: 10.3969/j.issn.1001-1978.2015.08.017 [12] 李艾芳, 沈国林, 焦士勇, 等. 细胞色素P450介导的补骨脂酚代谢减毒[J]. 北京大学学报(医学版), 2012, 44(3):431-436. [13] YANG Y, YING G X, WU F T, et al. sTim-3 alleviates liver injury via regulation of the immunity microenvironment and autophagy[J]. Cell Death Discov,2020,6:62. [14] YEW W W, CHANG K C, CHAN D P. Oxidative stress and first-line antituberculosis drug-induced hepatotoxicity[J]. Antimicrob Agents Chemother,2018,62(8):e02637-17. [15] WILDE B, KATSOUNAS A. Immune dysfunction and albumin-related immunity in liver cirrhosis[J]. Mediators Inflamm,2019,2019:7537649. [16] ARAKAWA K, IKEYAMA Y, SATO T, et al. Functional modulation of liver mitochondria in lipopolysaccharide/drug co-treated rat liver injury model[J]. J Toxicol Sci,2019,44(12):833-843. doi: 10.2131/jts.44.833 [17] ZHU H Y, CHAI Y C, DONG D H, et al. AICAR-induced AMPK activation inhibits the noncanonical NF-κB pathway to attenuate liver injury and fibrosis in BDL rats[J]. Can J Gastroenterol Hepatol,2018,2018:6181432. [18] XING W, YANG L, PENG Y, et al. Ginsenoside Rg3 attenuates Sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux[J]. Biosci Rep,2017,37(4):BSR20170934. doi: 10.1042/BSR20170934 [19] DONG S, CHEN Q L, SONG Y N, et al. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis[J]. J Toxicol Sci,2016,41(4):561-572. doi: 10.2131/jts.41.561 [20] XU M J, CAI Y, WANG H, et al. Fat-specific protein 27/CIDEC promotes development of alcoholic steatohepatitis in mice and humans[J]. Gastroenterology,2015,149(4):1030-1041.e6. doi: 10.1053/j.gastro.2015.06.009 [21] LAITAKARI A, OLLONEN T, KIETZMANN T, et al. Systemic inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 in mice protects from alcohol-induced fatty liver disease[J]. Redox Biol,2019,22:101145. doi: 10.1016/j.redox.2019.101145 [22] WANG Y X, DU Y, LIU X F, et al. A hepatoprotection study of Radix Bupleuri on acetaminophen-induced liver injury based on CYP450 inhibition[J]. Chin J Nat Med,2019,17(7):517-524.