-
肿瘤RNA是目前已知肿瘤疫苗的来源之一[1-2]。先前的研究表明,从CT26结肠癌细胞提取的肿瘤RNA可以通过增强机体抗肿瘤免疫来抑制肿瘤生长[3],但由于肿瘤RNA易降解、不稳定等特性,需要载体对其包裹后实施注射,从而发挥其抗肿瘤作用[4]。研究证实,纳米脂质体载体具有较强的稳定性,可有效地包裹RNA,并在体内和体外递送核酸,发挥核酸诱导或抑制细胞表达的作用[5-7]。然而,机体不同部位对药物的吸收情况不同,因此,导致药物吸收转化的效果产生差异。为了比较不同部位注射对药物治疗效果的影响,本研究从CT26结肠癌细胞中提取肿瘤RNA,并使用纳米脂质体对其进行包裹制备成纳米脂质体疫苗,分析了不同部位注射肿瘤RNA纳米脂质体疫苗所产生的增强机体抗肿瘤反应的情况。
Effect of different injection approaches of tumor RNA nanoliposome vaccine on the growth of colon cancer
-
摘要:
目的 本研究旨在比较CT26肿瘤细胞RNA负载于纳米脂质体后,使用不同途径注射所引起的生物体抗肿瘤生长的作用差异。 方法 将提取的肿瘤RNA载入到纳米脂质体制备成肿瘤RNA纳米脂质体疫苗,然后进行脂质体疫苗表征。肿瘤RNA纳米脂质体疫苗粒径为(120.0±12.1)nm,电位为(3.39±0.56)mV。最后在小鼠不同部位注射肿瘤RNA纳米脂质体疫苗,检测分析不同部位注射对小鼠结肠癌移植瘤生长的影响。 结果 通过肿瘤RNA纳米脂质体疫苗对移植瘤小鼠进行不同途径注射治疗,结果显示,相比皮下注射,腹腔注射能够更加有效地增强生物体抗肿瘤免疫反应,抑制移植瘤生长。最后,比较小鼠重要脏器的H&E染色,均未见脏器有明显的器质性病变。 结论 通过腹腔注射肿瘤RNA纳米脂质体疫苗比皮下注射能够更加有效地增强机体抗肿瘤免疫反应。 Abstract:Objective To compare the differences in the anti-tumor growth effects of organisms with different injections of CT26 tumor cell RNA loaded into nanoliposomes. Methods The extracted tumor RNA was loaded into nanoliposomes to prepare tumor RNA nanoliposome vaccines, and the related properties of nanoliposome vaccines were investigated. The particle size of nanoliposome vaccines was (120.0±12.1)nm and zeta potential was (3.39±0.56)mV. Tumor RNA nanoliposome vaccines were injected into different parts of the mice to test and analyze the influence of different injections on the growth of colon cancer transplanted tumors in mice. Results Tumor RNA nanoliposome vaccines were used to inject tumor-transplanted mice in different ways. Compared with underarm injection, intraperitoneal injection enhanced the organism's anti-tumor immune response and inhibited the growth of transplanted tumors more effectively. The H&E staining of important organs in mice was compared and no obvious organic lesions were found in the organs. Conclusion Intraperitoneal injections of nanoliposome loaded with tumor RNA can enhance the body's anti-tumor immune response more effectively than underarm injections. -
Key words:
- CT26 colon cancer cells /
- nanoliposomes /
- vaccine /
- tumor RNA
-
-
[1] SAYOUR E J, MENDEZ-GOMEZ H R, MITCHELL D A. Cancer vaccine immunotherapy with RNA-loaded liposomes[J]. Int J Mol Sci, 2018, 19(10). DOI: 10.3390/ijms19102890. [2] NAIR S K, MORSE M, BOCZKOWSKI D, et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells[J]. Ann Surg,2002,235(4):540-549. doi: 10.1097/00000658-200204000-00013 [3] NAKA T, IWAHASHI M, NAKAMURA M, et al. Tumor vaccine therapy against recrudescent tumor using dendritic cells simultaneously transfected with tumor RNA and granulocyte macrophage colony-stimulating factor RNA[J]. Cancer Sci,2008,99(2):407-413. doi: 10.1111/j.1349-7006.2007.00698.x [4] MITCHELL D A, NAIR S K. RNA-transfected dendritic cells in cancer immunotherapy[J]. J Clin Invest,2000,106(9):1065-1069. doi: 10.1172/JCI11405 [5] POWELL D, CHANDRA S, DODSON K, et al. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer[J]. Eur J Pharm Biopharm,2017,114:108-118. doi: 10.1016/j.ejpb.2017.01.011 [6] LI S D, HUANG L. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells[J]. Mol Pharm,2006,3(5):579-588. doi: 10.1021/mp060039w [7] VEMANA H P, SARASWAT A, BHUTKAR S, et al. A novel gene therapy for neurodegenerative Lafora disease via EPM2A-loaded DLinDMA lipoplexes[J]. Nanomedicine (Lond),2021,16(13):1081-1095. doi: 10.2217/nnm-2020-0477 [8] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660 [9] XIE Y, SHI L, HE X, et al. Gastrointestinal cancers in China, the USA, and Europe[J]. Gastroenterol Rep (Oxf),2021,9(2):91-104. [10] MEI K C, LIAO Y P, JIANG J, et al. Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors[J]. ACS Nano,2020,14(10):13343-13366. doi: 10.1021/acsnano.0c05194 [11] CHAUDHARY S, GARG T, MURTHY R S, et al. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route[J]. J Drug Target,2014,22(10):871-882. doi: 10.3109/1061186X.2014.950664 [12] AHMADPOUR E, SARVI S, HASHEMI SOTEH M B, et al. Enhancing immune responses to a DNA vaccine encoding Toxoplasma gondii GRA14 by calcium phosphate nanoparticles as an adjuvant[J]. Immunol Lett,2017,185:40-47. doi: 10.1016/j.imlet.2017.03.006 [13] ISHITSUKA T, AKITA H, HARASHIMA H. Functional improvement of an IRQ-PEG-MEND for delivering genes to the lung[J]. J Control Release,2011,154(1):77-83. [14] KAWASAKI K, EIZUKA M, KUDARA N, et al. Mesenteric phlebosclerosis complicating colonic cancer treated by endoscopic submucosal dissection[J]. Clin J Gastroenterol,2020,13(6):1183-1188. doi: 10.1007/s12328-020-01205-5 [15] ELEZOĞLU B, TOLUNAY S. The relationship between the stromal mast cell number, microvessel density, c-erbB-2 staining and survival and prognostic factors in colorectal carcinoma[J]. Turk Patoloji Derg,2012,28(2):110-118. [16] MATUCCI A, VULTAGGIO A, DANESI R. The use of intravenous versus subcutaneous monoclonal antibodies in the treatment of severe asthma: a review[J]. Respir Res,2018,19(1):154. [17] KISHIMOTO S, ISHIHARA M, NAKAMURA S, et al. Fragmin/protamine microparticles to adsorb and protect HGF and to function as local HGF carriers in vivo[J]. Acta Biomater,2013,9(1):4763-4770. [18] KAGAN L, GERSHKOVICH P, MENDELMAN A, et al. The role of the lymphatic system in subcutaneous absorption of macromolecules in the rat model[J]. Eur J Pharm Biopharm,2007,67(3):759-765. doi: 10.1016/j.ejpb.2007.04.002 [19] ZHANG Q S, XIE C, WANG D Y, et al. Improved antitumor efficacy of combined vaccine based on the induced HUVECs and DC-CT26 against colorectal carcinoma[J]. Cells,2019,8(5):494. doi: 10.3390/cells8050494