-
乳腺癌是多发于女性中的恶性肿瘤性疾病,威胁着广大女性的健康[1-2]。据统计,全球女性癌症中,乳腺癌发病率和致死率均高于肺癌,目前居于首位,2020年约230万人诊断出患有乳腺癌,致死病例约68.5万[3]。先天性因素、膳食、环境、工作、发育成长阶段及雌激素类药物等多种因素都能成为乳腺癌的诱发因素[4-5]。目前,乳腺癌早期诊断普遍使用的是影像学检查(临床乳腺体格检查、超声、乳腺X线摄影、磁共振成像等)[6]以及肿瘤标志物(CEA、CA153、VEGF、TSGF等)临床筛查[7],前者操作复杂且具有一定的组织伤害性[8],后者局限于需多项联合检测且特异性不高[7,9],均难以满足临床需求。尽管手术、化疗技术在不断提高,但是抗肿瘤药物疗效有限,乳腺癌患者预后效果不佳,尤其是晚期复发和转移普遍。因此,寻找乳腺癌细胞早期代谢生物标志物,进行安全灵敏的早期诊断,对于乳腺癌诊疗具有重要意义[10]。
作为继基因组学、转录组学、蛋白质组学的后起之秀,代谢组学以研究不同病理生理或基因突变条件下对机体内源性小分子化合物代谢变化为核心[11]。内源性小分子化合物是基因和蛋白质的下游产物,从分子生物层面实时动态地反映上游基因及外部因素对机体功能的影响[12]。代谢组学采用以高灵敏度、高通量为特征的现代仪器分析技术方法,对机体的内源性小分子化合物进行动态分析[13]。伴随乳腺癌发展,患者机体内与氨基酸、糖类、脂质等代谢有关的小分子代谢物会发生异常变化。利用代谢组学方法,将改变的内源性代谢物作为生物标志物,在此基础上寻找相关代谢途径,合理推测乳腺癌的发病机制,揭示生物标志物与乳腺癌发生发展间的关联,最终帮助乳腺癌的临床诊疗。本文主要综述代谢组学在乳腺癌早期诊断、药理研究与药效评估、疾病进程监测以及预后评估的研究进展。
-
Catarina等[34]采用核磁共振氢谱(1H-NMR)分析了40位BC患者和38位对照(CTL)健康志愿者尿液代谢谱,采用K-S非参数检验和t检验及OPLS-DA等模式识别方法,发现BC患者肌酸、甘氨酸、丝氨酸、二甲胺、三甲胺N-氧化物、α-羟基异丁酸酯、甘露醇、谷氨酰胺等代谢物表现出高敏感性和特异性,代谢途径分析表明,差异代谢物出现可能与BC患者甘氨酸、谷氨酸、丁酸、糖酵解、TCA循环、牛磺酸和丙酮酸代谢途径遭到破坏有关。获得的差异代谢物具有作为生物标志物的潜力,可将BC患者与CTL区分,应用于早期诊断。
约1/4乳腺癌细胞都是三阴性乳腺癌细胞(TNBC),其特点是易转移浸润且复发率高[16]。Fang等[35]基于早期发现的40种氨基酸目标化合物,使用亲水作用色谱法-串联质谱(HILIC-MS/MS),对TNBC、非TNBC及正常的乳腺上皮细胞36种细胞内和34种细胞外小分子物质进行代谢组学分析。运用Mann–Whitney U检验或Kruskal–Wallis检验及OPLS-DA模式识别方法研究,发现与正常细胞相比,两种乳腺癌细胞氨基酸代谢库均明显扩大;与非TNBC相比,TNBC细胞内谷氨酸、β-丙氨酸、天冬氨酸、谷胱甘肽、N-乙酰丝氨酸和N-乙酰甲硫氨酸代谢明显增加(变化倍数>2,P<0.01, VIP>1),TNBC对细胞外谷氨酰胺、丝氨酸、β-丙氨酸和赖氨酸摄取显著增加,对谷氨酸和L-半胱氨酸-谷胱甘肽排泄升高(P<0.01,VIP>1)。研究结果表明,TNBC细胞具有独特的氨基酸代谢特征,对其量化分析可为TNBC患者提供更多新的早期治疗目标靶点。
Daniele等[36]使用液相色谱-四级杆飞行时间质谱(LC-Q-TOF/MS),对23名BC患者和35名口腔健康妇女唾液进行非靶向代谢组学分析,使用t检验、卡方检验等单因素统计方法,对比METLIN数据库,鉴定出乳腺癌组中有31种化合物上调(P<0.05),其中,患者与健康人群相比,发现7种寡肽(H-Arg-Arg-Ser-OH,H-His-Lys-(Ala-Ser)-OH or (Gly-Thr)-OH,H-Ala-Lys-Phe-Trp-OH or H-Gly-Lys-Thr-Ser-OH or H-Arg-Arg-Ser-Ser-OH,H-Phe-Ile-Gln-Arg-OH,H-Glu-Phe-Gln-Arg-OH or H-Ile-Lys-Gln-Trp-OH,H-Phe-Lys-Lys-Trp-OH or H-Phe-Gln-Arg-Tyr-OH,H-Phe-Phe-Gln-Trp-OH)和6种甘油磷脂(PG14∶2、PA32∶1、PS28∶0、PS40∶6、PI31∶1、PI38∶7)表达上调,表现出明显的代谢差异,说明唾液代谢物有望区分乳腺癌患者和健康人群,适用于早期诊断。
依据不同亚型乳腺癌患者的代谢物差异性可以用于乳腺癌诊断甚至个性化治疗。Leticia等[37]采集了4种常见LA型、LB型、HER2+型和TN型乳腺癌患者和健康对照组的血浆样本,利用非靶向超高液相色谱-高分辨质谱(HPLC-HRMS)代谢组学方法进行分析,通过单变量非参数Wilcoxon秩和检验区分乳腺癌患者和健康受试者的数据差异,多变量PAC和PLS-DA评价统计模型质量,初步确定了4种乳腺癌分子亚型中变化显著的代谢物:LA,TN和HER2分子亚型患者血浆中L-色氨酸浓度显著降低,可能与L-色氨酸代谢激活芳烃受体帮助癌细胞免疫逃逸有关[38];4种亚型乳腺癌患者磷酸乙醇胺、磷脂血浆浓度降低,提示乳腺癌中脂质代谢差异具有重要意义。上述代谢组学数据表明,色氨酸和部分脂质具有作为乳腺癌诊断的生物标志物潜力,有望推动乳腺癌患者血浆诊断和个性化治疗的发展。
基于以上研究,笔者对代谢组学在乳腺癌早期诊断中发现部分特征代谢物的应用进行归纳总结,见表1。
表 1 代谢组学在乳腺癌早期诊断中发现的特征代谢物
作者 样本来源 技术方法 统计学方法 特征代谢物 Catarina等 尿液 1H-NMR K-S非参数检验和t检验与PAC,PLS-DA和OPLS-DA 肌酸、甘氨酸、丝氨酸、二甲胺、三甲胺N-氧化物、
α-羟基异丁酸酯、甘露醇、谷氨酰胺等Fang等 TNBC、非TNBC及正常的乳腺上皮细胞 HILIC-MS/MS Mann-Whitney U检验或Kruskal-Wallis检验与OPLS-DA 胞内:谷氨酸、β-丙氨酸、天冬氨酸、谷胱甘肽、
N-乙酰丝氨酸、N-乙酰甲硫氨酸
胞外:谷氨酰胺、丝氨酸、β-丙氨酸、赖氨酸谷氨酸、
L-半胱氨酸-谷胱甘肽Daniele等 唾液 UPLC-Q-TOF-MS t检验、卡方检验等 7种寡肽和6种甘油磷脂 Leticia等 血浆 HPLC-HRMS 非参数Wilcoxon秩和检验、PAC、PLS-DA 色氨酸、磷酸乙醇胺、磷脂 综上所述,基于代谢组学,针对不同乳腺癌患者所能提供的研究样品,采用合适的仪器、数据分析方法获取差异显著的内源性小分子代谢物信息,有效减小检查手段对乳腺癌患者造成的机体损伤,并丰富乳腺癌早期诊断方法,使代谢组学成为乳腺癌早期诊断的有力辅助工具。
-
癌细胞无限增殖需要大量的能量和物质基础。癌细胞具有特殊的代谢方式,即在有氧条件下倾向于糖酵解而不是三羧酸循环来产生能量[39],这种新陈代谢重编程称为Warburg效应[40]。一方面,糖酵解中间产物可以合成肿瘤细胞生长所需蛋白质和脂质等生物大分子[41],同时线粒体损伤可限制丙酮酸进入,使更多丙酮酸在胞质内通过无氧氧化释放能量[42]。另一方面,癌细胞可持续摄取营养物质[43]以及通过加强糖异生途径弥补Warburg效应缺陷。基于癌细胞特殊的代谢重编程,通过药物代谢组学分析,监测机体用药后内源小分子代谢物变化有利于乳腺癌药理研究和药效评估。
Ghanem等[44]对经抗坏血酸处理的管腔和基底样乳腺癌细胞,进行了代谢组学分析,结合细胞存活率数据,发现高剂量抗坏血酸使得乳腺癌细胞糖酵解过程中磷酸丙糖途径(PPP)被严重破坏,ATP水平下降,代谢物重新定向积累为脂质小滴,以及磷酸戊糖途径中代谢物和酶活性增加;细胞死亡依赖于抗坏血酸诱导的氧化应激和ROS积累、DNA损伤以及细胞内辅助因子(包括NAD+/NADH)耗竭效应。综上表明,高剂量抗坏血酸通过诱发乳腺癌细胞“氧化还原危机和能量灾难”发挥细胞毒作用。
Arminan等[45]通过NMR技术检测及主成分分析方法分析处理数据,以评估在N-(2-羟丙基)甲基丙烯酰胺-阿霉素共聚物(HPMA-Dox)影响下体外细胞培养模型和体内原位乳腺癌模型的精准抗癌效果,并结合蛋白质表达和流式细胞技术,研究了给药前后原位乳腺癌患者内源性小分子化合物相关生化改变,发现与游离Dox给药相比,用HPMA-Dox进行治疗后,乳腺癌细胞凋亡增加,糖酵解减弱,磷脂水平降低,且HPMA-Dox在体内模型的血液循环时间增加,同时肿瘤储积高、心脏储积低,说明HPMA-Dox药代动力学加强、组织分布得以优化。提示HPMA-Dox可作为一种更精确的抗癌药物模式用于乳腺癌临床治疗。
Panis等[14]将120名单侧乳腺浸润性癌患者随机分为未经化疗组(CA组,n=50)、单剂量短期紫杉醇静脉滴注组(PTX组,n=30)、心脏剖面健康组(CTR组,n=40),采用LC-MS对其血浆样品进行分析后发现,与CA组乳腺癌患者相比,单剂量短期紫杉醇静脉滴注可使患者血浆高密度脂蛋白水平显著降低,过氧化氢水平升高;与CTR组相比,PTX组患者C反应蛋白和肌酸激酶分数明显升高。以上表明单剂量短期紫杉醇静脉滴注就足以引起脂质代谢显著改变,可能导致毒性累积效应,进一步增加乳腺癌患者心脏病发生风险。可见,代谢组学可参与化疗药物给药优化方案研究,提高药物抗癌效果。
左旋肉碱、酰基肉碱和相关酶是癌症代谢网络中的重要介质。以往研究中LC-MS对乳腺癌中左旋肉碱、酰基肉碱的研究都是均质组织分析,缺乏异质性癌症组织中肉碱的空间分布差异[46]。Sun等[47]利用MSI对异种移植小鼠模型和人类癌组织样本及正常组织中的17种肉碱进行成像并开发了高空间分辨率基质辅助激光解吸电离-质谱成像(MALDI-MSI)方法,发现由170个癌症样本和128个正常样本组成的肉碱谱模型能准确区分乳腺癌,L-肉碱和短链酰基肉碱在人类乳腺癌和异种移植小鼠模型中都有显著改变,乳腺癌中由肉碱系统介导的β氧化代谢途径改变,并且首次发现代谢酶CPT2和CRAT在乳腺癌组织中差异表达。证明肉碱代谢在乳腺癌的代谢物和酶水平上都被重新编程。
-
心理神经病症(PN)是指许多乳腺癌患者在化疗期间及化疗之后出现疼痛、疲劳和抑郁症状。Debra等[48]使用液相色谱高分辨率质谱法对19位早期乳腺癌女性化疗前后血清样本分别进行非靶向和靶向代谢组学分析,非靶向分析发现化疗后乳腺癌患者乙酰-L-丙氨酸和硫酸吲哚酚浓度升高,5-氧代-L-脯氨酸浓度降低;色氨酸途径靶向分析表明尿氨酸水平、犬尿氨酸/色氨酸水平升高。t检验和Pearson相关系数进一步揭示上述差异代谢物与PN症状显著相关,促进了早期乳腺癌女性PN症状发展程度生物学机制研究。
研究表明,患者他莫昔芬体内代谢物因多昔芬浓度与雌激素受体α(ERα)阳性乳腺癌复发有关[49],同时他莫昔芬本身和其他代谢物也表现出抗雌激素抗肿瘤活性[50]。Vries等[50]用细胞增殖法测定他莫昔芬、(Z)-因多昔芬、(Z)-4-羟基他莫昔芬、N-去甲基他莫昔芬抗刺激素活性,建立抗雌激素活性评分模型(AAS),采用Cox回归方法研究AAS与复发的关系,证明因多昔芬浓度可作为他莫昔芬和代谢物抗雌激素作用的代替,与乳腺癌复发显著相关。
Kamil等[51]用LC-MS/MS对小鼠原位接种4T1转移性乳腺癌细胞进行血浆代谢组学分析和脂质组学分析,建立PLS-DA模型。结果显示,荷癌小鼠癌细胞早期转移表现为L-精氨酸代谢减弱,精氨酸酶和多胺合成增强;晚期转移表现为精氨酸代谢途径改变,不对称二甲基精氨酸血浆浓度升高,能量代谢重新编程为糖酵解,戊糖磷酸途径加速以及三羧酸循环速率降低,脂质分布模式改变,包括总磷脂酰胆碱减少,与二酯结合的磷脂分数减少以及溶血磷脂增加,以上代谢变化在一定程度上表征了癌症转移进展。
目前,OncotypeDX 21基因表达检测技术常用来评估乳腺癌的复发以指导乳腺癌治疗,但在临床的不确定性和基因组不一致的情况下,许多早期乳腺癌的患者仍然会受到过度治疗[52-54]。McCartney等[55]利用1H-NMR分析了87例内分泌受体阳性、HER2阴性早期乳腺癌(eBC)患者血清,使用RF建立eBC患者复发风险的统计模型。最终根据代谢组学特征进一步细分复发风险,并有效区分了每个Oncotype风险分类:在7例复发中代谢组学分析准确预测了其中的6例,1例复发发生在低风险组,3例发生在中风险组,3例发生在高风险组,成功建立了一种通过血清代谢组学分析进一步完善OncotypeDX基因检测风险评分的方法。
Application of metabonomics in breast cancer
-
摘要: 乳腺癌(BC)是发病率较高的恶性肿瘤性疾病,发现时常处于晚期、预后较差,由于缺乏准确的生物标志物,乳腺癌的早期诊断及治疗仍不理想。代谢组学(metabolomics)是一门采用高通量分析技术来研究机体在不同病理生理刺激或基因突变影响下内源性代谢物动态变化规律的新学科,为乳腺癌生物标志物的筛选、疾病诊疗提供了新途径。主要概述代谢组学并介绍其在乳腺癌早期诊断、药效评价、疾病预后中应用的研究进展。Abstract: Breast cancer is a kind of malignant tumor discovered lately, with a high incidence and a poor prognosis. The shortage of relevant biological biomarkers lead to the unsatisfactory treatment efficacy and the early diagnosis in breast cancer. Metabolomics is a new discipline that uses high-throughput analysis techniques to study the dynamic changes of endogenous metabolites under the influence of different pathological physiological stimulation or gene mutations, which has provided a novel way for biomarker screening and disease diagnosis and treatment. The overview of metabolomics and its applications in breast cancer early diagnosis, drug efficacy evaluation, and disease prognosis were summarized in this review.
-
Key words:
- metabolomics /
- breast cancer /
- biological biomarkers /
- early diagnosis /
- drug efficacy evaluation /
- disease prognosis
-
表 1 代谢组学在乳腺癌早期诊断中发现的特征代谢物
作者 样本来源 技术方法 统计学方法 特征代谢物 Catarina等 尿液 1H-NMR K-S非参数检验和t检验与PAC,PLS-DA和OPLS-DA 肌酸、甘氨酸、丝氨酸、二甲胺、三甲胺N-氧化物、
α-羟基异丁酸酯、甘露醇、谷氨酰胺等Fang等 TNBC、非TNBC及正常的乳腺上皮细胞 HILIC-MS/MS Mann-Whitney U检验或Kruskal-Wallis检验与OPLS-DA 胞内:谷氨酸、β-丙氨酸、天冬氨酸、谷胱甘肽、
N-乙酰丝氨酸、N-乙酰甲硫氨酸
胞外:谷氨酰胺、丝氨酸、β-丙氨酸、赖氨酸谷氨酸、
L-半胱氨酸-谷胱甘肽Daniele等 唾液 UPLC-Q-TOF-MS t检验、卡方检验等 7种寡肽和6种甘油磷脂 Leticia等 血浆 HPLC-HRMS 非参数Wilcoxon秩和检验、PAC、PLS-DA 色氨酸、磷酸乙醇胺、磷脂 -
[1] WILKINSON L, GATHANI T. Understanding breast cancer as a global health concern[J]. Br J Radiol,2022,95(1130):20211033-20211036. doi: 10.1259/bjr.20211033 [2] CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl),2021,134(7):783-791. doi: 10.1097/CM9.0000000000001474 [3] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660 [4] LI A H, SHEN Z, SUN Z F, et al. Occupational risk factors and breast cancer in Beijing, China: a hospital-based case-control study[J]. BMJ Open,2022,12(2):e054151-e054159. doi: 10.1136/bmjopen-2021-054151 [5] 徐文斌, 龚乘丙, 李尧, 等. p53 codon 72基因多态性与中国女性乳腺癌发生风险关系的系统评价与Meta分析[J]. 医学新知, 2022, 32(1):23-32. [6] 周星彤, 沈松杰, 孙强. 中国乳腺癌筛查现状及进展[J]. 中国医学前沿杂志(电子版), 2020, 12(3):6-11. [7] 王柏田, 王笑峰. 血清肿瘤标记物联合动态检测在乳腺癌诊断和监控治疗中的应用价值[J]. 中国医学创新, 2021, 18(3):6-11. [8] YANG L Q, WANG Y, CAI H S, et al. Application of metabolomics in the diagnosis of breast cancer: a systematic review[J]. J Cancer,2020,11(9):2540-2551. doi: 10.7150/jca.37604 [9] 程柳柳, 李俊. 乳腺癌早期诊断技术[J]. 国际肿瘤学杂志, 2013, 40(6):453-455. doi: 10.3760/cma.j.issn.1673-422X.2013.06.017 [10] BLACK E, RICHMOND R. Improving early detection of breast cancer in sub-Saharan Africa: why mammography may not be the way forward[J]. Global Health,2019,15(1):3-14. doi: 10.1186/s12992-018-0446-6 [11] NICHOLSON J K, LINDON J C, HOLMES E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica,1999,29(11):1181-1189. doi: 10.1080/004982599238047 [12] SAIGUSA D, MATSUKAWA N, HISHINUMA E, et al. Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics[J]. Drug Metab Pharmacokinet,2021,37:100373-100389. doi: 10.1016/j.dmpk.2020.11.008 [13] KIM K J, KIM H J, PARK H G, et al. A MALDI-MS-based quantitative analytical method for endogenous estrone in human breast cancer cells[J]. Sci Rep,2016,6:24489-24496. doi: 10.1038/srep24489 [14] PANIS C, BINATO R, CORREA S, et al. Short infusion of paclitaxel imbalances plasmatic lipid metabolism and correlates with cardiac markers of acute damage in patients with breast cancer[J]. Cancer Chemother Pharmacol,2017,80(3):469-478. doi: 10.1007/s00280-017-3384-8 [15] SILVA C L, OLIVAL A, PERESTRELO R, et al. Untargeted urinary 1H NMR-based metabolomic pattern as a potential platform in breast cancer detection[J]. Metabolites,2019,9(11):269-286. doi: 10.3390/metabo9110269 [16] BAI X P, NI J, BERETOV J, et al. Triple-negative breast cancer therapeutic resistance: where is the Achilles' heel? Cancer Lett,2021,497:100-111. doi: 10.1016/j.canlet.2020.10.016 [17] ZHANG A H, SUN H, WANG X J. Serum metabolomics as a novel diagnostic approach for disease: a systematic review[J]. Anal Bioanal Chem,2012,404(4):1239-1245. doi: 10.1007/s00216-012-6117-1 [18] MAMAS M, DUNN W B, NEYSES L, et al. The role of metabolites and metabolomics in clinically applicable biomarkers of disease[J]. Arch Toxicol,2011,85(1):5-17. doi: 10.1007/s00204-010-0609-6 [19] JOHNSON C H, IVANISEVIC J, SIUZDAK G. Metabolomics: beyond biomarkers and towards mechanisms[J]. Nat Rev Mol Cell Biol,2016,17(7):451-459. doi: 10.1038/nrm.2016.25 [20] BEGLEY P, FRANCIS-MCINTYRE S, DUNN W B, et al. Development and performance of a gas Chromatography−Time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum[J]. Anal Chem,2009,81(16):7038-7046. doi: 10.1021/ac9011599 [21] ZHANG T L, ZHANG A H, QIU S, et al. Current trends and innovations in bioanalytical techniques of metabolomics[J]. Crit Rev Anal Chem,2016,46(4):342-351. doi: 10.1080/10408347.2015.1079475 [22] TEAV T, GALLART-AYALA H, VAN DER VELPEN V, et al. Merged targeted quantification and untargeted profiling for comprehensive assessment of acylcarnitine and amino acid metabolism[J]. Anal Chem,2019,91(18):11757-11769. doi: 10.1021/acs.analchem.9b02373 [23] 金丹, 刘萌萌, 郭咸希, 等. 代谢组学技术在糖尿病中的应用研究进展[J]. 中国药师, 2021, 24(3):542-547. doi: 10.3969/j.issn.1008-049X.2021.03.028 [24] ALEXANDROV T. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence[J]. Annu Rev Biomed Data Sci,2020,3:61-87. doi: 10.1146/annurev-biodatasci-011420-031537 [25] GEIER B, SOGIN E M, MICHELLOD D, et al. Spatial metabolomics of in situ host-microbe interactions at the micrometre scale[J]. Nat Microbiol,2020,5(3):498-510. doi: 10.1038/s41564-019-0664-6 [26] SHARIATGORJI R, NILSSON A, FRIDJONSDOTTIR E, et al. Spatial visualization of comprehensive brain neurotransmitter systems and neuroactive substances by selective in situ chemical derivatization mass spectrometry imaging[J]. Nat Protoc,2021,16(7):3298-3321. doi: 10.1038/s41596-021-00538-w [27] CHONG J, WISHART D S, XIA J G. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis[J]. Curr Protoc Bioinformatics,2019,68(1):e86-e214. [28] PORTO-FIGUEIRA P, PEREIRA J A M, CÂMARA J S. Exploring the potential of needle trap microextraction combined with chromatographic and statistical data to discriminate different types of cancer based on urinary volatomic biosignature[J]. Anal Chim Acta,2018,1023:53-63. doi: 10.1016/j.aca.2018.04.027 [29] RAMAUTAR R. Capillary electrophoresis-mass spectrometry for clinical metabolomics[J]. Adv Clin Chem,2016,74:1-34. [30] CHEN T L, YOU Y J, XIE G X, et al. Strategy for an association study of the intestinal microbiome and brain metabolome across the lifespan of rats[J]. Anal Chem,2018,90(4):2475-2483. doi: 10.1021/acs.analchem.7b02859 [31] 谭起龙, 邓魁, 李康, 等. 随机森林回归分析方法在代谢组学批次效应移除中的应用[J]. 中国卫生统计, 2020, 37(5):667-671. [32] LI M, GUO Y, FENG Y M, et al. Identification of triple-negative breast cancer genes and a novel high-risk breast cancer prediction model development based on PPI data and support vector machines[J]. Front Genet,2019,10:180-192. doi: 10.3389/fgene.2019.00180 [33] ZHOU L, RUEDA M, ALKHATEEB A. Classification of breast cancer Nottingham prognostic index using high-dimensional embedding and residual neural network[J]. Cancers,2022,14(4):934-940. doi: 10.3390/cancers14040934 [34] CATARINA LS, ANA O, ROSA P, et al. Untargeted urinary 1H NMR-based metabolomic pattern as a potential platform in breast cancer detection[J]. Metabolites, 2019, 9(11): 269-286. [35] KOU F, ZHU B J, ZHOU W B, et al. Targeted metabolomics reveals dynamic portrayal of amino acids and derivatives in triple-negative breast cancer cells and culture media[J]. Mol Omics,2021,17(1):142-152. doi: 10.1039/D0MO00126K [36] XAVIER ASSAD D, ACEVEDO A C, CANÇADO PORTO MASCARENHAS E, et al. Using an untargeted metabolomics approach to identify salivary metabolites in women with breast cancer[J]. Metabolites,2020,10(12):506-519. doi: 10.3390/metabo10120506 [37] DÍAZ-BELTRÁN L, GONZÁLEZ-OLMEDO C, LUQUE-CARO N, et al. Human plasma metabolomics for biomarker discovery: targeting the molecular subtypes in breast cancer[J]. Cancers,2021,13(1):147-165. doi: 10.3390/cancers13010147 [38] CHEONG J E, SUN L J. Targeting the IDO1/TDO2−KYN-AhR pathway for cancer immunotherapy - challenges and opportunities[J]. Trends Pharmacol Sci,2018,39(3):307-325. doi: 10.1016/j.tips.2017.11.007 [39] SUN L C, SUO C X, LI S T, et al. Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg Effect[J]. Biochim Biophys Acta Rev Cancer,2018,1870(1):51-66. doi: 10.1016/j.bbcan.2018.06.005 [40] FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science,2020,368(6487):112-123. [41] TESLAA T, TEITELL M A. Techniques to monitor glycolysis[J]. Methods Enzymol,2014,542:91-114. [42] CORBET C, FERON O. Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling[J]. Biochim Biophys Acta Rev Cancer,2017,1868(1):7-15. doi: 10.1016/j.bbcan.2017.01.002 [43] COURTNAY R, NGO D C, MALIK N, et al. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K[J]. Mol Biol Rep,2015,42(4):841-851. doi: 10.1007/s11033-015-3858-x [44] GHANEM A, MELZER A M, ZAAL E, et al. Ascorbate kills breast cancer cells by rewiring metabolism via redox imbalance and energy crisis[J]. Free Radic Biol Med,2021,163:196-209. doi: 10.1016/j.freeradbiomed.2020.12.012 [45] ARMIÑÁN A, PALOMINO-SCHÄTZLEIN M, DELADRIERE C, et al. Metabolomics facilitates the discrimination of the specific anti-cancer effects of free- and polymer-conjugated doxorubicin in breast cancer models[J]. Biomaterials,2018,162:144-153. doi: 10.1016/j.biomaterials.2018.02.015 [46] GIESBERTZ P, ECKER J, HAAG A, et al. An LC-MS/MS method to quantify acylcarnitine species including isomeric and odd-numbered forms in plasma and tissues[J]. J Lipid Res,2015,56(10):2029-2039. doi: 10.1194/jlr.D061721 [47] SUN C L, WANG F K, ZHANG Y, et al. Mass spectrometry imaging-based metabolomics to visualize the spatially resolved reprogramming of carnitine metabolism in breast cancer[J]. Theranostics,2020,10(16):7070-7082. doi: 10.7150/thno.45543 [48] LYON D E, STARKWEATHER A, YAO Y W, et al. Pilot study of metabolomics and psychoneurological symptoms in women with early stage breast cancer[J]. Biol Res Nurs,2018,20(2):227-236. doi: 10.1177/1099800417747411 [49] SUN Y H, KIM J H, VANGIPURAM K, et al. Pharmacometabolomics reveals a role for histidine, phenylalanine, and threonine in the development of paclitaxel-induced peripheral neuropathy[J]. Breast Cancer Res Treat,2018,171(3):657-666. doi: 10.1007/s10549-018-4862-3 [50] DE VRIES SCHULTINK A H M, ALEXI X, VAN WERKHOVEN E, et al. An Antiestrogenic Activity Score for tamoxifen and its metabolites is associated with breast cancer outcome[J]. Breast Cancer Res Treat,2017,161(3):567-574. doi: 10.1007/s10549-016-4083-6 [51] KUS K, KIJ A, ZAKRZEWSKA A, et al. Alterations in arginine and energy metabolism, structural and signalling lipids in metastatic breast cancer in mice detected in plasma by targeted metabolomics and lipidomics[J]. Breast Cancer Res,2018,20(1):148-161. doi: 10.1186/s13058-018-1075-y [52] SPARANO J A, GRAY R J, MAKOWER D F, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer[J]. N Engl J Med,2018,379(2):111-121. doi: 10.1056/NEJMoa1804710 [53] GOLDSTEIN D A, MAYER C, SHOCHAT T, et al. The concordance of treatment decision guided by OncotypeDX and the PREDICT tool in real-world early-stage breast cancer[J]. Cancer Med,2020,9(13):4603-4612. doi: 10.1002/cam4.3088 [54] DINAN M A, WILSON L E, REED S D, et al. Association of 21-gene assay (OncotypeDX) testing and receipt of chemotherapy in the medicare breast cancer patient population following initial adoption[J]. Clin Breast Cancer,2020,20(6):487-494. doi: 10.1016/j.clbc.2020.05.010 [55] MCCARTNEY A, VIGNOLI A, TENORI L, et al. Metabolomic analysis of serum may refine 21-gene expression assay risk recurrence stratification[J]. NPJ Breast Cancer,2019,5:26-31. doi: 10.1038/s41523-019-0123-9 [56] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA Cancer J Clin,2021,71(1):7-33. doi: 10.3322/caac.21654 [57] JIANG Y L, CHEN X P, FU S M. Advances in the correlation between intestinal microbiota and breast cancer development[J]. J Cancer Ther,2020,11(12):758-771. doi: 10.4236/jct.2020.1112066