[1]
|
LIU X D. Overview: role of drug transporters in drug disposition and its clinical significance[J]. Adv Exp Med Biol, 2019, 1141:1-12. |
[2]
|
HONG M K, LIU H H, CHEN G H, et al. Oridonin alters hepatic urea cycle via gut microbiota and protects against ace-taminophen-induced liver injury[J]. Oxid Med Cell Longev, 2021, 2021:3259238. |
[3]
|
LIU M, SHI W, HUANG Y F, et al. Intestinal flora: a new target for traditional Chinese medicine to improve lipid metabolism disorders[J]. Front Pharmacol, 2023, 14:1134430. doi: 10.3389/fphar.2023.1134430 |
[4]
|
FUJIMURA K E, SLUSHER N A, CABANA M D, et al. Role of the gut microbiota in defining human health[J]. Expert Rev Anti Infect Ther, 2010, 8(4):435-454. doi: 10.1586/eri.10.14 |
[5]
|
DE VOS W M, TILG H, VAN HUL M, et al. Gut microbiome and health: mechanistic insights[J]. Gut, 2022, 71(5):1020-1032. doi: 10.1136/gutjnl-2021-326789 |
[6]
|
GUMBINER B M. Breaking through the tight junction barrier[J]. J Cell Biol, 1993, 123(6):1631-1633. doi: 10.1083/jcb.123.6.1631 |
[7]
|
BAAS A F, KUIPERS J, VAN DER WEL N N, et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD[J]. Cell, 2004, 116(3):457-466. doi: 10.1016/S0092-8674(04)00114-X |
[8]
|
TSUKITA S, FURUSE M, ITOH M. Multifunctional strands in tight junctions[J]. Nat Rev Mol Cell Biol, 2001, 2(4):285-293. doi: 10.1038/35067088 |
[9]
|
ROSE E C, ODLE J, BLIKSLAGER A T, et al. Probiotics, prebiotics and epithelial tight junctions: a promising approach to modulate intestinal barrier function[J]. Int J Mol Sci, 2021, 22(13):6729. doi: 10.3390/ijms22136729 |
[10]
|
SUZUKI T. Regulation of the intestinal barrier by nutrients: the role of tight junctions[J]. Anim Sci J, 2020, 91(1):e13357. doi: 10.1111/asj.13357 |
[11]
|
ADEWOLE D, AKINYEMI F. Gut microbiota dynamics, growth performance, and gut morphology in broiler chickens fed diets varying in energy density with or without bacitracin methylene disalicylate (BMD)[J]. Microorganisms, 2021, 9(4):787. doi: 10.3390/microorganisms9040787 |
[12]
|
LI Y F, UDAYAKUMAR V, SATHUVAN M, et al. Effects of laminarin zwitterionic carboxylate and sulfonate on the intestinal barrier function and gut microbiota[J]. Carbohydr Polym, 2022, 278:118898. doi: 10.1016/j.carbpol.2021.118898 |
[13]
|
YADAV M K, KUMARI I, SINGH B, et al. Probiotics, prebiotics and synbiotics: safe options for next-generation therapeutics[J]. Appl Microbiol Biotechnol, 2022, 106(2):505-521. doi: 10.1007/s00253-021-11646-8 |
[14]
|
MERCADO-LUBO R, MCCORMICK B A. The interaction of gut microbes with host ABC transporters[J]. Gut Microbes, 2010, 1(5):301-306. doi: 10.4161/gmic.1.5.12925 |
[15]
|
ZHAI Q X, FENG S S, ARJAN N, et al. A next generation probiotic, Akkermansia muciniphila[J]. Crit Rev Food Sci Nutr, 2019, 59(19):3227-3236. doi: 10.1080/10408398.2018.1517725 |
[16]
|
GRAJEDA-IGLESIAS C, DURAND S, DAILLÈRE R, et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites[J]. Aging, 2021, 13(5):6375-6405. doi: 10.18632/aging.202739 |
[17]
|
BEHROUZI A, VAZIRI F, RIAZI RAD F, et al. Comparative study of pathogenic and non-pathogenic Escherichia coli outer membrane vesicles and prediction of host-interactions with TLR signaling pathways[J]. BMC Res Notes, 2018, 11(1):539. doi: 10.1186/s13104-018-3648-3 |
[18]
|
SAKSENA S, GOYAL S, RAHEJA G, et al. Upregulation of P-glycoprotein by probiotics in intestinal epithelial cells and in the dextran sulfate sodium model of colitis in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(6):G1115-G1123. doi: 10.1152/ajpgi.00027.2011 |
[19]
|
DU F, HUANG R F, LIN D, et al. Resveratrol improves liver steatosis and insulin resistance in non-alcoholic fatty liver disease in association with the gut microbiota[J]. Front Microbiol, 2021, 12:611323. doi: 10.3389/fmicb.2021.611323 |
[20]
|
LI W D, WANG Y X, SUN M, et al. The prebiotic-like effects of Coprinus comatus polysaccharides on gut microbiota in normal mice and those with acute alcoholic liver injury: a comparative study[J]. Evid Based Complementary Altern Med, 2020, 2020:2027570. |
[21]
|
LI F T, YANG D, SONG F Y, et al. In vitro effects of ginseng and the seed of Zizyphus jujuba var. spinosa on gut microbiota of rats with spleen deficiency[J]. Chem Biodivers, 2020, 17(9):e2000199. doi: 10.1002/cbdv.202000199 |
[22]
|
ZHANG Y B, LIU X Y, WANG Y F, et al. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus[J]. Food Contr, 2016, 59:282-289. doi: 10.1016/j.foodcont.2015.05.032 |
[23]
|
LI Z X, ZHAO Y X, CHENG J L, et al. Integrated plasma metabolomics and gut microbiota analysis: the intervention effect of Jiawei Xiaoyao San on liver depression and spleen deficiency liver cancer rats[J]. Front Pharmacol, 2022, 13:906256. doi: 10.3389/fphar.2022.906256 |
[24]
|
YANG Y N, CAO S J, XU W Y, et al. Dual modulation of gut bacteria and fungi manifests the gut-based anti-hyperlipidemic effect of Coptidis Rhizoma[J]. Biomed Pharmacother, 2022, 153:113542. doi: 10.1016/j.biopha.2022.113542 |
[25]
|
TIAN Q M, WEI S M, SU H R, et al. Bactericidal activity of Gallic acid against multi-drug resistance Escherichia coli[J]. Microb Pathog, 2022, 173:105824. doi: 10.1016/j.micpath.2022.105824 |
[26]
|
YANG J, QIAN D, JIANG S, et al. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2012, 898:95-100. doi: 10.1007/s12272-017-0986-y |
[27]
|
BAO Y, HAN X, LIU D, et al. Gut microbiota: the key to the treatment of metabolic syndrome in traditional Chinese medicine - a case study of diabetes and nonalcoholic fatty liver disease[J]. Front Immunol, 2022, 13:1072376. doi: 10.3389/fimmu.2022.1072376 |
[28]
|
SHEN H, GAO X J, LI T, et al. Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism[J]. J Ethnopharmacol, 2018, 216:47-56. doi: 10.1016/j.jep.2018.01.021 |
[29]
|
GUO Y P, SHAO L, CHEN M Y, et al. In vivo metabolic profiles of Panax notoginseng saponins mediated by gut microbiota in rats[J]. J Agric Food Chem, 2020, 68(25):6835-6844. doi: 10.1021/acs.jafc.0c01857 |
[30]
|
SONG R, XU L, XU F G, et al. Metabolic analysis of rhubarb extract by rat intestinal bacteria using liquid chromatography-tandem mass spectrometry[J]. Biomed Chromatogr, 2011, 25(3):417-426. doi: 10.1002/bmc.1467 |
[31]
|
HUANG Z H, XU Y, WANG Q, et al. Metabolism and mutual biotransformations of anthraquinones and anthrones in rhubarb by human intestinal flora using UPLC-Q-TOF/MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1104:59-66. doi: 10.1016/j.jchromb.2018.10.008 |
[32]
|
GOC J, LV M Z, BESSMAN N J, et al. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer[J]. Cell, 2021, 184(19): 5015-5030. |
[33]
|
RACOVA Z, ANZENBACHEROVA E, PAPOUSKOVA B, et al. Metabolite profiling of natural substances in human: in vitro study from fecal bacteria to colon carcinoma cells (Caco-2)[J]. J Nutr Biochem, 2020, 85:108482. doi: 10.1016/j.jnutbio.2020.108482 |
[34]
|
ENRIGHT E F, GOVINDARAJAN K, DARRER R, et al. Gut microbiota-mediated bile acid transformations alter the cellular response to multidrug resistant transporter substrates in vitro: focus on P-glycoprotein[J]. Mol Pharm, 2018, 15(12):5711-5727. doi: 10.1021/acs.molpharmaceut.8b00875 |
[35]
|
TELBISZ Á, ÖZVEGY-LACZKA C, HEGEDŰS T, et al. Effects of the lipid environment, cholesterol and bile acids on the function of the purified and reconstituted human ABCG2 protein[J]. Biochem J, 2013, 450(2):387-395. doi: 10.1042/BJ20121485 |
[36]
|
KELLY C J, ZHENG L, CAMPBELL E L, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J]. Cell Host Microbe, 2015, 17(5):662-671. doi: 10.1016/j.chom.2015.03.005 |
[37]
|
LI Y Y, JI X Y, WU H N, et al. Mechanisms of traditional Chinese medicine in modulating gut microbiota metabolites-mediated lipid metabolism[J]. J Ethnopharmacol, 2021, 278:114207. doi: 10.1016/j.jep.2021.114207 |
[38]
|
CHEN M Y, LIAO Z Q, LU B Y, et al. Huang-Lian-Jie-du-decoction ameliorates hyperglycemia and insulin resistant in association with gut microbiota modulation[J]. Front Microbiol, 2018, 9:2380. doi: 10.3389/fmicb.2018.02380 |
[39]
|
LOUIS P, HOLD G L, FLINT H J. The gut microbiota, bacterial metabolites and colorectal cancer[J]. Nat Rev Microbiol, 2014, 12(10):661-672. doi: 10.1038/nrmicro3344 |
[40]
|
XIE X H, LIAO J B, AI Y L, et al. Pi-Dan-Jian-qing decoction ameliorates type 2 diabetes mellitus through regulating the gut microbiota and serum metabolism[J]. Front Cell Infect Microbiol, 2021, 11:748872. doi: 10.3389/fcimb.2021.748872 |
[41]
|
KRAEHENBUHL J P, PRINGAULT E, NEUTRA M R. Review article: intestinal epithelia and barrier functions[J]. Aliment Pharmacol Ther, 1997, 11(s3):3-9. doi: 10.1111/j.1365-2036.1997.tb00803.x |
[42]
|
GAO Z Z, LI Q W, WU X M, et al. New insights into the mecha-nisms of Chinese herbal products on diabetes: a focus on the “bacteria-mucosal immunity-inflammation-diabetes” axis[J]. J Immunol Res, 2017, 2017:1813086. |
[43]
|
SHEN J, CHENG J Z, ZHU S G, et al. Regulating effect of baicalin on IKK/IKB/NF-kB signaling pathway and apoptosis-related proteins in rats with ulcerative colitis[J]. Int Immunopharmacol, 2019, 73:193-200. doi: 10.1016/j.intimp.2019.04.052 |
[44]
|
YANG C C, DU Y, REN D Y, et al. Gut microbiota-dependent catabolites of tryptophan play a predominant role in the protective effects of turmeric polysaccharides against DSS-induced ulcerative colitis[J]. Food Funct, 2021, 12(20):9793-9807. doi: 10.1039/D1FO01468D |
[45]
|
CHEN S Y, CHEN Z J, WANG Y, et al. Targeted delivery of Chinese herb pair-based berberine/tannin acid self-assemblies for the treatment of ulcerative colitis[J]. J Adv Res, 2022, 40:263-276. doi: 10.1016/j.jare.2021.11.017 |
[46]
|
NIU C, HU X L, YUAN Z W, et al. Pulsatilla decoction improves DSS-induced colitis via modulation of fecal-bacteria-related short-chain fatty acids and intestinal barrier integrity[J]. J Ethnopharmacol, 2023, 300:115741. doi: 10.1016/j.jep.2022.115741 |
[47]
|
GHOSH S, SINGH R, VANWINKLE Z M, et al. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis[J]. Theranostics, 2022, 12(12):5574-5595. doi: 10.7150/thno.70754 |