-
AML12小鼠正常肝细胞、HEK-293T上皮细胞、载体pGL4.20[luc2/Puro] 与pHBLV-CMV-MCS-EF1-puro、慢病毒包装辅助质粒pMD2.G和psPAX2均为实验室保存;DH5α感受态细胞(天根生化科技有限公司);ORM1 启动子基因序列来自NCBI数据库(NC_000070.7)。
-
Veriti™ 96 孔快速热循环仪(Thermo Fisher Scientific公司,美国);移液器、低温高速台式离心机(EPPENDORF公司,德国);电热恒温培养箱(上海跃进医疗器械有限公司);琼脂糖凝胶电泳仪、多功能水平电泳槽(上海天能科技有限公司);电热恒温水浴锅(上海一恒科技有限公司);倒置生物显微镜(重庆光电仪器总公司);全波长多功能酶标仪(BMG,德国)。
-
PCR引物和基因合成(生工生物工程股份有限公司);RNA提取试剂盒RNAeasy™动物RNA抽提试剂盒(上海碧云天生物技术有限公司);限制性内切酶KpnI、限制性内切酶Hind Ⅲ、限制性内切酶AgeI、限制性内切酶ApaI、限制性内切酶ClaI、限制性内切酶BamHI、转染试剂Lipofectamine 3000试剂盒(Thermo Fisher Scientific公司,美国);高保真聚合酶phanta Max-Super-Fidlity DNA polymerase(南京诺唯赞生物科技股份有限公司);PCR试剂盒2X Pro Taq 预混液、反转录试剂盒Evo M-MLV 反转录试剂预混液、SYBR Green Pro Taq HS 预混型 qPCR 试剂盒(湖南艾科瑞生物工程有限公司);琼脂糖凝胶 DNA 纯化回收试剂盒、质粒小提试剂盒(天根生化科技有限公司);HB-infusionTM 无缝克隆试剂盒(汉恒生物科技有限公司);转染试剂polybrene(Sigma,美国);Firefly-Glo萤光素酶报告基因检测试剂盒(大连美仑生物技术有限公司);FDA 上市药物库(陶术生物科技有限公司);测序由赛业生物科技有限公司完成。
-
提取小鼠新鲜的肝组织,使用RNAeasy™动物RNA抽提试剂盒提取总RNA,反转录为cDNA,用作PCR模板,保存于−20 ℃冰箱。
-
根据同源重组引物设计原则和参考小鼠ORM1(NC_000070.7)基因组序列设计引物(选取起始位点上游2 000个碱基对),采用同源重组法设计引物,上游引物加入KpnI酶切位点,下游引物加入Hind Ⅲ酶切位点,引物序列见表1。产物进行琼脂糖凝胶电泳,使用琼脂糖凝胶DNA回收试剂盒回收目的基因。
表 1 ORM1 启动子基因引物序列
引物名称 引物序列(5′—3′) ORM1-F GGGGTACCGTTCTCAGCATGTTGCATAAAT ORM1-R CCAAGCTTGCTGAGGGCACTCAGAGC 注:F: 正向引物; R: 反向引物。 -
将PCR产物与载体质粒pGL4.20 [luc2 Puro](插入位点选择AgeI与ApaI)于37 ℃双酶切5 h,用同源重组酶将目的片段与载体质粒连接。使用DH5α感受态细胞将重组质粒进行转化后,接种于含有嘌呤霉素抗性的固体平板,用涂布器将重组质粒涂抹均匀,倒置37 ℃恒温箱培养12~16 h。将筛选出来的阳性克隆进行测序,随后进行菌液扩增和质粒抽提纯化。对提取的质粒进行浓度检测和A260/280检测,把质粒保存于−20 ℃冰箱。构建成功的重组载体命名为 pGL4.20-ORM1 启动子。根据Lipofectamine 3000试剂盒说明书,分别将pGL4.20-ORM1 启动子和pGL4.20转染至AML12小鼠正常肝细胞中,使用地塞米松(DXMS)来验证报告基因的有效性和可行性。
-
以pGL4.20-ORM1 启动子重组质粒为模板,设计引物,引物序列见表2。产物进行琼脂糖凝胶电泳,使用琼脂糖凝胶DNA回收试剂盒回收目的基因。
表 2 LV-ORM1 启动子-LUC-PURO基因引物序列
引物名称 引物序列(5′—3′) LV-ORM1
启动子-LUC-PURO-FGGACAGCAGAGATCCAGTTTATCGATGTTCTCAGCATGTTGCATAAATT LV-ORM1
启动子-LUC-PURO-RGAGCGATCGCAGATCCTTAGGATCCTTACACGGCGATCTTGCCGCCCTT 注:F: 正向引物; R: 反向引物。 将PCR产物与载体质粒pHBLV-CMV-MCS-EF1-PURO(插入位点选择ClaI与BamHI)于37 ℃双酶切5 h,用同源重组酶将目的片段与载体质粒连接。使用DH5α感受态细胞将重组质粒进行转化后,接种于含有嘌呤霉素抗性的固体平板,用涂布器将重组质粒涂抹均匀,倒置37 ℃恒温箱培养12~16 h。将筛选出来的阳性克隆,送赛业生物科技有限公司进行测序。测序成功之后,进行菌液扩增和质粒抽提纯化。对提取的质粒进行浓度检测和A260/280检测,把质粒保存于−20 ℃冰箱。构建成功的重组载体命名为LV-ORM1 启动子-LUC-PURO。同样方法构建LV-LUC-PURO作为对照载体。
-
提前传代HEK-293T细胞用于转染,将慢病毒包装辅助质粒pMD2.G 10 μg、psPAX2 5 μg和LV-ORM1 启动子-LUC-PURO 10 μg以及转染试剂75 µl混匀后静置,在室温下温育15 min后缓慢滴加至293T细胞中,于37 ℃、5% CO2细胞培养箱中培养。转染后16 h更换含10 % 胎牛血清 FBS的新鲜完全培养基。转染后 48 h和72 h,分别收集两次病毒上清液(48 h收集后置换新鲜完全培养基),将两次收集的上清液混合,进行离心浓缩和病毒管分装,−80°C冰箱保存。
-
将生长状态良好的HEK-293T细胞消化计数后稀释至 1×105个/ml, 加入96孔板,100 µl/孔,为每个病毒准备6个孔。放入37°C 、5% CO2 培养箱中培养。将病毒进行3倍梯度稀释,共6个稀释度,接种于293T细胞,继续培养48 h后,在荧光显微镜下观察结果。在观察结果前6 h需更换新鲜10% FBS完全培养基,从孔中吸出80 µl培养基,然后加入80 µl新鲜10 % FBS完全培养基,放入37°C、5% CO2 培养箱中培养。6 h后荧光显微镜下观察结果,荧光或活细胞百分比在10%~50% 的孔计算病毒滴度。目的病毒命名为LV-ORM1 启动子-LUC-PURO。同样方法,阴性对照病毒命名为LV-LUC-PURO。
-
将AML12小鼠正常肝细胞在含有10% FBS、1% ITS(10 µg/ml胰岛素+5.5 µg/µl转铁蛋白+5 ng/ml硒)、1% 双抗以及40 ng/ml DXMS的DMEM 培养基,于37 ℃、5% CO2饱和湿度的细胞培养箱内培养。AML12细胞在10 cm培养皿中细胞长满以后,用0.25%胰蛋白酶消化,离心收集细胞后稀释成密度为1.5×105个/ml的细胞悬液,接种于6孔板,每孔2 ml,使得第2天细胞的融合率在60% 左右,利于感染。设置实验组LV-ORM1 启动子-LUC-PURO和阴性对照组LV-LUC-PURO,为促进病毒的感染效率,首先,感染时弃原有培养基,添加含5% FBS的新鲜培养液2 ml,其次,添加助感染试剂polybrene,使其最终浓度为7 μg/ml。设置2个(10/20)感染复数(MOI)组,感染24 h后换新鲜完全培养基。在感染48 h后,观察慢病毒颗粒感染效率,倒置荧光显微镜下观察荧光比例以确定最佳感染效率,最终选定MOI=20的分组进行后续实验。
待细胞融合率达60% 时,用嘌呤毒素(0.8 μg/ml)浓度处理48 h,然后换新鲜的嘌呤毒素培养基继续处理,细胞密度超过80%时则进行传代处理,后续每隔2~3 d更换含嘌呤毒素培养基扩大培养,经过反复挑取抗药性细胞后获得的稳定转染细胞,命名为LV-AML12-ORM1 启动子-LUC-PURO。同样方法,阴性对照细胞株命名为LV-AML12-LUC-PURO。
-
使用TRIzol试剂提取组织总RNA,使用反转录试剂盒将其逆转录成cDNA,然后进行PCR扩增,采用2–ΔΔCT分析目的基因的相对表达量,引物序列见表3。
表 3 qPCR引物设计序列
引物名称 引物序列(5′—3′) Luciferase-F CGCACATATCGAGGTGGACA Luciferase-R GCAAGCTATTCTCGCTGCAC mGapdh-F GTCAAGGCCGAGAATGGGAA mGapdh-R CTCGTGGTTCACACCCATCA 注:qPCR: 实时荧光定量聚合酶链式反应; mGapdh:小鼠甘油醛-3-磷酸脱氢酶; F: 正向引物; R: 反向引物。 -
使用二甲基亚砜(DMSO)和DXMS来验证LV-AML12-ORM1 启动子-LUC-PURO作为药物筛选工具的有效性和可行性。将LV-AML12-ORM1 启动子-LUC-PURO稳转细胞株培养于96孔黑色侧壁透明底板,用10 μmol/L DXMS处理12 h,同时用0.1% DMSO作为溶剂对照组。参照荧光素酶报告基因检测试剂盒说明书,加入80 µl检测溶液,细胞充分裂解后在酶标仪中检测荧光素发光值。
为了评估本高通量细胞筛选平台的精确性和稳定性,使用Z′因子作为度量标准,Z′因子是高通量筛选中常用来评估和验证的主要统计参数之一:
$$Z^{\prime}=1-\frac{3 \sigma_{\mathrm{DMSO}}+3 \sigma_{\mathrm{DXMS}}}{\left|\mu_{\mathrm{DMSO}}-\mu_{\mathrm{DXMS}}\right|}$$ 式中σDMSO和σDXMS分别为阴性对照组和阳性对照组的标准差,μDMSO和μDXMS分别为阴性对照组和阳性对照组的平均值。若0.5<Z′≤1,则认为此筛选模型具有良好的精确性与稳定性。
-
基于对美国食品药品监督管理局(FDA)批准的药物库的筛选,选用陶术生物的FDA上市药物库,筛选可靶向升高ORM的药物。
-
实验数据使用软件 GraphPad Prism 9 进行作图和分析。两组间比较用t检验,以 P<0.05 为差异具有统计学意义。
Establishment of a high-throughput screening platform based on drug repurposing targeting alpha-1-acid glycoprotein and discovery of potential weight loss drugs
-
摘要:
目的 α1酸性糖蛋白(ORM)是减肥药物研发的新靶点。基于药物重定位,拟从已上市药物的化合物库中寻找可以靶向ORM的潜在减肥药物。 方法 构建pGL4.20-ORM1 启动子重组质粒,验证后利用慢病毒载体构建稳定表达ORM1 启动子-LUC-PURO的AML12细胞株,利用该细胞株对上市药物库中化合物进行高通量筛选,通过酶标仪对细胞的荧光值进行表征。 结果 对1 470种化合物进行初筛和复筛,发现42种化合物可以提高ORM1启动子表达,可用于进一步的减肥效应评估。 结论 通过慢病毒载体成功构建了LV-AML12-ORM1 启动子-LUC-PURO稳定表达细胞株,为高效、稳定筛选靶向ORM的减肥药物奠定了基础。 Abstract:Objective Alpha-1-acid glycoprotein (ORM) was a new target for the development of weight loss drugs. To search for potential weight loss drugs that could target ORM from the compound library of already marketed drugs based on drug repurposing. Methods The pGL4.20-ORM1 promoter recombinant plasmid was contructed and validated, and then a lentiviral vector was utilized to establish stable AML12 cell lines expressing ORM1 promoter-LUC-PURO. This cell line was employed for high-throughput screening of compounds from the marketed drug library, and the luminescence value of the cells was characterized by enzyme marker. Results Primary screening and secondary screening of 1 470 compounds identified 42 compounds that increased ORM1 promoter expression and could be used for further weight loss effect assessment. Conclusion This study successfully constructed LV-AML12-ORM1 promoter-LUC-PURO stable expression cell lines using lentiviral vectors, laying a foundation for efficient and stable screening of weight loss drugs targeting ORM. -
Key words:
- drug repurposing /
- ORM /
- high-throughput screening /
- obesity /
- weight loss drugs
-
表 1 ORM1 启动子基因引物序列
引物名称 引物序列(5′—3′) ORM1-F GGGGTACCGTTCTCAGCATGTTGCATAAAT ORM1-R CCAAGCTTGCTGAGGGCACTCAGAGC 注:F: 正向引物; R: 反向引物。 表 2 LV-ORM1 启动子-LUC-PURO基因引物序列
引物名称 引物序列(5′—3′) LV-ORM1
启动子-LUC-PURO-FGGACAGCAGAGATCCAGTTTATCGATGTTCTCAGCATGTTGCATAAATT LV-ORM1
启动子-LUC-PURO-RGAGCGATCGCAGATCCTTAGGATCCTTACACGGCGATCTTGCCGCCCTT 注:F: 正向引物; R: 反向引物。 表 3 qPCR引物设计序列
引物名称 引物序列(5′—3′) Luciferase-F CGCACATATCGAGGTGGACA Luciferase-R GCAAGCTATTCTCGCTGCAC mGapdh-F GTCAAGGCCGAGAATGGGAA mGapdh-R CTCGTGGTTCACACCCATCA 注:qPCR: 实时荧光定量聚合酶链式反应; mGapdh:小鼠甘油醛-3-磷酸脱氢酶; F: 正向引物; R: 反向引物。 -
[1] SERAVALLE G, GRASSI G. Obesity and hypertension[J]. Pharmacol Res, 2017, 122:1-7. doi: 10.1016/j.phrs.2017.05.013 [2] ALPERT M A, OMRAN J, BOSTICK B P. Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function[J]. Curr Obes Rep, 2016, 5(4):424-434. doi: 10.1007/s13679-016-0235-6 [3] TWIG G, YANIV G, LEVINE H, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood[J]. N Engl J Med, 2016, 374(25):2430-2440. doi: 10.1056/NEJMoa1503840 [4] WOLFE B M, KVACH E, ECKEL R H. Treatment of obesity: weight loss and bariatric surgery[J]. Circ Res, 2016, 118(11):1844-1855. doi: 10.1161/CIRCRESAHA.116.307591 [5] BLÜHER M. Obesity: global epidemiology and pathogenesis[J]. Nat Rev Endocrinol, 2019, 15(5):288-298. doi: 10.1038/s41574-019-0176-8 [6] SQUADRITO F, ROTTURA M, IRRERA N, et al. Anti-obesity drug therapy in clinical practice: evidence of a poor prescriptive attitude[J]. Biomed Pharmacother, 2020, 128:110320. doi: 10.1016/j.biopha.2020.110320 [7] RUAN Y, XIANG K F, ZHANG H M, et al. Orosomucoid: a promising biomarker for the assessment of exercise-induced fatigue triggered by basic combat training[J]. BMC Sports Sci Med Rehabil, 2022, 14(1):100. doi: 10.1186/s13102-022-00490-6 [8] 徐栋平. 急性期蛋白ORM在缺血性脑卒中的保护作用及其机制研究[D]. 上海: 第二军医大学, 2018. [9] SUN Y, YANG Y L, QIN Z, et al. The acute-phase protein orosomucoid regulates food intake and energy homeostasis via leptin receptor signaling pathway[J]. Diabetes, 2016, 65(6):1630-1641. doi: 10.2337/db15-1193 [10] KORT E, JOVINGE S. Drug repurposing: claiming the full benefit from drug development[J]. Curr Cardiol Rep, 2021, 23(6):62. doi: 10.1007/s11886-021-01484-5 [11] QIU Y, SUN Y M, XU D Q, et al. Screening of FDA-approved drugs identifies sutent as a modulator of UCP1 expression in brown adipose tissue[J]. EBioMedicine, 2018, 37:344-355. doi: 10.1016/j.ebiom.2018.10.019