-
金线莲Anoectochilus roburghii (Wall.) Lindl,又名金线兰、金蚕、乌人参、金线入骨消等,是一种多年生兰科草本植物[1],主产地为福建。文献报道多糖类、黄酮类、生物碱类、氨基酸类等是金线莲主要化学成分[2]。其中金线莲多糖是其主要药理活性物质,具有降血糖、抗氧化、抗肝损伤、增强免疫功能、抗肿瘤等药用功效[3]。本研究为提高金线莲多糖提取率,采用超声提取的方法,在单因素实验的基础上以响应面法优化其提取工艺。蛋白质的存在往往影响到多糖的活性,蛋白的脱除是多糖提取纯化的一个关键步骤[4],且天然植物中多糖与蛋白质两种高分子成分分子量相近,严重制约了进一步的分析[5],而Sevage试剂法、三氯乙酸(TCA)法、盐法(氯化钙和氯化钠法)、盐酸法等是多糖脱蛋白的常用方法[4-6],为此,笔者对以上方法在金线莲多糖提取中的影响进行了考察,为进一步深入研究金线莲多糖奠定一定的基础。
-
UV-3200紫外分光光度计(上海美谱达仪器有限公司);AR224CN电子天平(美国奥豪斯仪器常州有限公司);HWS-12型电热恒温水浴锅、电热鼓风干燥箱(上海一恒科学仪器有限公司);SC-04低速离心机(安徽中科中佳科学仪器有限公司);KQ-500DE型超声波清洗器(昆山市超声仪器有限公司)。
-
福建永泰产金线莲样品经福建中医药大学药学院黄泽豪副教授鉴定为兰科开唇兰属的金线莲Anoectochilus roburghii (Wall.) Lindl。D-水葡萄糖(中国食品药品检定研究院,批号:110833-201506);乙醇(批号:20181208)、苯酚(批号:P815401)、氢氧化钠(批号:20160509)购自上海国药集团化学试剂有限公司;硫酸(批号:1706191)、盐酸(批号:1903301,)、氯化钠(批号:1610141)、氯仿(批号:1803121)购自广东西陇科学股份有限公司;氯化钙(广东光华化学有限公司,批号:20091031);正丁醇(江苏强盛功能化学股份有限公司,批号:20130418);超纯水(实验室制备)。
-
取D-葡萄糖50 mg溶于1000 ml的量瓶中,加水定容,得对照品溶液。
-
取金线莲鲜品清洗干净,于60 ℃恒温干燥箱中烘干,打粉,过60目筛,得金线莲干品。取金线莲粉末5 g,以料液比为1:10加水,48 ℃超声提取30 min,超声功率为300 W,超声提取2次;对上述提取液3600 r /min离心15 min,弃去沉淀,即得金线莲原始液。取上述原始液5 ml加4倍体积无水乙醇放置过夜,4000 r/min下离心10 min,沉淀加水溶解,于1000 ml的量瓶中定容,得供试品溶液。
-
按本课题先前研究的“优化的苯酚硫酸法”[7],计算金线莲多糖提取得率。
-
按“2.2”项下的方法,对超声提取工艺中各单因素进行考察:①以超声温度30、40、50、60、70、80 ℃分别进行提取;②以超声功率200、250、300、350、400 W分别进行提取;③用超声分别提取10、20、30、40、50 min;④以1∶5、1∶10、1∶15、1∶20、1∶30的料液比加水;⑤用超声分别提取1、2、3次。
-
在单因素考察的基础上,利用软件Design-Expert.V8.0.6.1中Box-Behnken试验原理,选择对多糖提取率影响较大3个因素料液比(A)、超声提取时间(B)、超声温度(C)为自变量,以多糖提取率(R)为响应值,设计3因素3水平实验。因素与水平设计如表1。
表 1 Box-Behnken 试验设计因素与水平
因素 水平 −1 0 1 料液比(A) 5 10 15 超声时间(B) 20 30 40 超声提取温度(C) 40 50 60 -
取5 ml金线莲原始液,用2 mol/L盐酸调节至pH 3,并保持过夜。将该混合物在4000 r/min下离心10 min,弃去沉淀,上清液加入4倍体积无水乙醇放置过夜,4000 r/min下离心10 min,所得沉淀物加水溶解,于1000 ml的量瓶中定容,得脱蛋白供试品溶液。
-
取5 ml金线莲原始液,以2% NaOH溶液将其调至pH 8~9,加热至85 ℃。将CaCl2固体调至5%(50 g/L)的浓度,煮沸30 min,冷却至室温并过滤,用稀盐酸将滤液调至pH 7,加入4倍体积无水乙醇放置过夜,4000 r/min下离心10 min,得多糖沉淀。加水溶解重复上述操作3次,所得沉淀物加水溶解,于1000 ml的量瓶中定容,得脱蛋白供试品溶液。
-
取5 ml金线莲原始液,在沸腾(90 ℃)条件下,用2%NaOH溶液将多糖溶液调节到pH 9~10。加入NaCl固体,浓度调至5%(50 g/L),然后混合煮沸30 min。冷却至室温并过滤,上清液用稀盐酸调至pH 7。添加4倍体积无水乙醇放置过夜沉淀多糖,在4000 r/min下离心10 min,弃上清液得多糖沉淀。加水溶解重复上述操作3次,所得沉淀物加水溶解,于1000 ml的量瓶中定容,得脱蛋白供试品溶液。
-
取5 ml金线莲原始液,加入10% TCA溶液将其调节到pH 3,静置过夜。样品4000 r/min离心10 min,沉淀物丢弃,上清液加4倍体积无水乙醇放置过夜,在4000 r/min下离心10 min,弃去上清液得多糖沉淀。加水溶解重复上述操作3次,所得沉淀物加水溶解,于1000 ml的量瓶中定容,得脱蛋白供试品溶液。
-
取5 ml金线莲原始液,以金线莲水提溶液:正丁醇:氯仿按1:1:4的比例进行除蛋白,振荡器振荡20 min 后,4000 r/min 转速离心 5 min,弃去下层有机相。该过程重复3次,上层水相添加4倍体积无水乙醇放置过夜,在4000 r/min下离心10 min,弃去上清液得多糖沉淀物,所得沉淀物加水溶解,于1000 ml的量瓶中定容,得脱蛋白供试品溶液。
-
以“紫外分光光度法”对蛋白含量进行测定[5],
蛋白质浓度C(mg/ml) = 1.45A280−0.74A260
多糖损失率=[(供试品多糖含量-脱蛋白供试品多糖含量)/供试品多糖含量]×100%
蛋白脱除率=[(供试品蛋白含量-脱蛋白供试品蛋白含量)/供试品蛋白含量]×100%
-
参考相关文献,按“2.2” 项下使用不同提取方法制得对应的供试品,比较多糖得率,结果如表2。
表 2 提取金线莲多糖方法比较
实验结果表明,超声提取和酶提取均能获得较高的多糖提取率,由于酶价格昂贵,超声提取操作简便,且能获得高提取率,故选择超声提取进行下一步研究。
-
如图1所示:①随着提取温度的增加,提取得率逐渐增加,在50 ℃提取得率达到最大值,后随着温度的增加提取率逐渐下降并趋于稳定,故初步确定提取温度40~60℃作为进一步响应面考察设计的水平;②在超声功率为300 W时多糖提取率最高,实验结果显示,随着超声功率的增加,多糖提取率先上升后下降,但影响相对较小,故选定功率为300 W进行下一步分析;③以超声提取30 min,提取率最高,故初步确定超声时间20~40 min作为进一步响应面考察设计的水平;④料液比为1∶10时,多糖提取率最高,随着料液比的增加,提取率稍有下降且趋于平稳,故初步确定料液比1∶5~1∶15作为进一步响应面考察设计的水平;⑤随着提取次数的增加,提取率逐渐降低,提取3次后,多糖已基本提取完全,考虑实际操作及原料等,选定提取2次进行下一步分析。
-
在单因素考察的基础上,利用软件Design-Expert. V 8.0.6.1中Box-Behnken试验原理,设计3因素3水平实验。响应值设计方案及结果见表3,方差分析见表4。对数据分析后得到回归方程为:
表 3 Box-Behnken试验设计方案及结果
实验号 A B C 多糖提取率(%) 1 −1.000 0.000 −1.000 12.22 2 1.000 0.000 −1.000 10.16 3 0.000 1.000 −1.000 13.13 4 0.000 0.000 0.000 13.03 5 1.000 0.000 1.000 12.98 6 0.000 −1.000 −1.000 10.86 7 −1.000 −1.000 0.000 11.19 8 0.000 0.000 0.000 13.21 9 0.000 1.000 1.000 12.28 10 0.000 −1.000 1.000 12.25 11 −1.000 1.000 0.000 11.88 12 1.000 −1.000 0.000 11.08 13 0.000 0.000 0.000 13.12 14 0.000 0.000 0.000 12.85 15 −1.000 0.000 1.000 10.83 16 1.000 1.000 0.000 12.11 17 0.000 0.000 0.000 13.21 表 4 模型回归系数显著性检验结果
来源 平方和 自由度 均方 F P 模型 15.41 9 1.71 51.68 < 0.0001 A 5.513×10−3 1 5.513×10−3 0.17 0.6955 B 2.02 1 2.02 60.98 0.0001 C 0.49 1 0.49 14.64 0.0065 AB 0.029 1 0.029 0.87 0.3814 AC 4.43 1 4.43 133.76 < 0.0001 BC 1.25 1 1.25 37.87 0.0005 A2 4.65 1 4.65 140.33 < 0.0001 B2 0.92 1 0.92 27.87 0.0011 C2 0.99 1 0.99 29.99 0.0009 残差 0.23 7 0.033 失拟项 0.14 3 0.047 2.07 0.2463 纯误性 0.091 4 0.023 总离性 15.64 16 多糖提取率(R)=13.08+0.026A+0.50B+0.25C+0.085AB+1.05AC−0.56BC−1.05A2−0.47B2−0.49C2。
由表3知,回归模型有很好的显著性(P< 0.0001),说明二项式方程拟合良好,模型二项式方程失拟项不显著(P=0.2463),说明未知因素对实验干扰较小,拟合的相关系数r=0.9926,模型可信度良好,故可运用此模型实现超声提取金线莲多糖最佳工艺的分析探究。
根据拟合方程绘制响应面图谱,响应面分析的等高线图和响应面图(图2、图3),AC、BC具有相互影响,各图为料液比(A)、超声时间(B)、超声提取温度(C)中任意一个变量取零水平,其余变量对金线莲多糖提取率的交互作用影响。由图2、图3可以看出,提取时间对提取率影响最为显著,三者的主效应关系为:提取时间(B)>提取温度(A)>料液比(C),其中料液比与提取温度的响应曲面最为陡峭,证明料液比与提取温度的交互作用最为强。
通过Design-Expert. V 8.0.6.1软件对二项式回归方程进行最优值的计算,确定理论上的多糖提取最佳工艺:料液比为1∶9.88,超声提取温度为48.76 ℃,超声提取时间为36.08 min,超声提取次数为2次,超声功率为300 W,其多糖提取的理论得率为13.22%,考虑到实际操作的可行性,最佳工艺定为料液比1∶10,超声提取温度48 ℃,超声提取时间36 min,超声提取次数为2次,超声功率为300 W。为验证实验结果,进行3组平行实验,多糖提取得率分别为13.14%、13.05%、13.20%,其RSD为0.57%,提取得率的均值13.13%与理论值13.22%偏差0.09%,表明优化后的提取工艺可行,适用于金线莲中多糖的提取。
-
按“2.6”项下的方法进行脱蛋白操作,得出多糖损失率及蛋白脱除率结果如表5。实验结果表明,NaOH-CaCl2法脱蛋白可以获得较高蛋白脱除率,同时也能获得最低的多糖损失率。
Optimization and purification of extraction of polysaccharides from Anoecto-chilus roxburghii
-
摘要:
目的 以响应面法优化超声提取金线莲多糖的工艺,同时,对多糖纯化中除蛋白方法进行考察。 方法 以多糖提取率为检测指标,在单因素考察的基础上采用Box-Behnken实验设计及响应面法对料液比、超声时间、超声提取温度3个因素进行优化;以多糖保留率和蛋白脱除率对Sevage试剂法、TCA法、盐法(NaOH-CaCl2法和NaOH-NaCl法)、盐酸法5种脱蛋白方法进行考察。 结果 金线莲多糖最佳提取工艺为: 料液比1∶10,超声提取温度48 ℃,超声提取时间36 min,超声提取次数2次,超声功率为300 W,该条件下金线莲多糖提取率达到了13.13%;同时以NaOH-CaCl2法脱蛋白,多糖损失率为18.74%,蛋白脱除率为95.62%。 结论 超声提取操作简单,优化后提取方法能够取得较高提取率,NaOH-CaCl2法脱蛋白能够获得较高蛋白脱除率及多糖保留率,该方法适用于金线莲多糖活性成分的开发研究。 Abstract:Objective To optimize the process of ultrasonic extraction of polysaccharide in Anoectochilus roxburghii and to investigate the method of protein removal. Methods The extraction rate of polysaccharide was used as the detection index. On the basis of single factor investigation, Box-Behnken experimental design and response surface method were used to optimize the three factors of material-liquid ratio, ultrasonic time and ultrasonic extraction temperature. The five deproteinization methods including Sevage reagent method, TCA method, salt method (NaOH-CaCl2 and NaOH-NaCl) and hydrochloric acid method were investigated with the retention rate of polysaccharide and protein removal rate. Results The optimal extraction conditions of polysaccharide from Anoectochilus roxburghii were as follows: liquid-to-solid ratio was 10∶1, extraction temperature was 48 ℃ and extraction time was 36 min with extraction 2 times, ultrasonic power was 300 W, the extraction rate was 13.13%. NaOH-CaCl2 deproteinized methods∶ the loss rate of polysaccharide was 18.74%, and the removal rate of protein was 95.62%. Conclusion Ultrasonic extraction is easy to operate, and the optimized extraction method can achieve a high extraction rate. NaOH-CaCl2 deproteinization methods can get high protein removal rate and polysaccharide retention rate. This method is suitable for the research and development of the active components of the polysaccharides from Anoectochilus roxburghii. -
1. 病例报告
患者,女,44岁,因宫颈糜烂口服宫炎康颗粒(湖北纽兰药业有限公司,批准文号:Z20054677)18 g bid以及替硝唑胶囊(山东罗欣药业股份有限公司,批准文号:H10970233)0.5 g bid。服用7 d后出现小便颜色发黄,伴有间断乏力,停用上述两种药物,但未给予足够重视。患者停药7 d后出现皮肤及巩膜黄染,就诊于当地医院,急查肝功能:总胆红素(TBIL)135.1 μmol/L,直接胆红素(DBIL)77.4 μmol/L,谷丙转氨酶(ALT)1566 U/L,谷草转氨酶(AST)1327 U/L,碱性磷酸酶(ALP)151 U/L,γ-谷氨酰转肽酶(γ-GT)130 U/L。
患者在停药11 d后就诊于本院,入院后查肝功能:TBIL 107.6 μmol/L,DBIL 87.7 μmol/L,ALT 938 U/L,AST 478 U/L,ALP 203 U/L,γ-GT 137 U/L;病毒性肝炎抗体以及自身免疫抗体均为阴性,既往一般健康状况良好。入院后静脉给予复方甘草酸苷注射液200 mg qd、注射用还原型谷胱甘肽2 g qd、注射用丁二磺酸腺苷蛋氨酸2 000 mg qd和前列地尔注射液20 μg qd,同时口服熊去氧胆酸软胶囊200 mg tid进行保肝利胆治疗。治疗4 d后复查肝功能:TBIL 93.6 μmol/L,DBIL 77.3 μmol/L,ALT 408 U/L,AST 279 U/L,ALP 189 U/L,γ-GT 109 U/L,皮肤及巩膜黄染减退。继续原治疗方案7 d后,再次复查肝功能:TBIL 47.1 μmol/L,DBIL 38.2 μmol/L,ALT 316 U/L,AST 315 U/L,ALP 163 U/L,γ-GT 81 U/L,皮肤及巩膜黄染消失,肝功能显著好转出院,出院后继续口服药物复方甘草酸苷片75 mg tid以及熊去氧胆酸软胶囊200 mg tid治疗。患者出院2周后再次复查肝功能,胆红素和转氨酶等指标均恢复正常。
2. 讨论
患者为中年女性,无吸烟饮酒以及食物、药物过敏史,既往无肝脏疾病史;本次因宫颈糜烂口服宫炎康颗粒和替硝唑胶囊1周,因出现尿黄伴乏力停用药物,继而出现皮肤及巩膜黄染,同时肝脏转氨酶显著升高;经过11 d的入院治疗以及两周的出院口服保肝利胆药物治疗,肝功能恢复正常。根据最新的药物性肝损伤诊治指南[1]进行临床分型、因果关系评估(采用RUCAM评分法)以及严重程度分级,同时排除了其他原因如病毒性、酒精性或自身免疫性肝病,并结合用药史、疾病进程以及实验室指标,该患者诊断为药物性肝损伤,肝细胞损伤型,急性,RUCAM 7分(很可能),严重程度3级。
宫炎康颗粒为一种中成药,具有活血化瘀、解毒消肿的功效,用于慢性盆腔炎,其组方成分包括当归、赤芍、北败酱、香附(醋制)、炮姜、泽兰、川芎、红花、柴胡、车前子(盐炙)、海藻、延胡索。药品说明书中其不良反应、禁忌以及注意事项等均为尚不明确,未提示可能存在肝功能损害。此外,有关宫炎康颗粒的不良反应报道较少,且尚无引起肝损害的报道,仅有一例致面部针刺样疼痛的病例报告[2]。
大多数中成药的组方较为复杂,其引起不良反应包括肝损伤的机制很难阐明。宫炎康颗粒组方包含十二味中药,含有的化学成份尚不十分清楚,其中的柴胡和延胡索中药单方有引起肝损害的病例报道。延胡索中含有的延胡索乙素具有与有肝毒性的吡咯里西啶生物碱类似的结构,可能引起肝损害[3-4]。柴胡中的皂苷以及挥发油是主要的毒性成分,且肝脏是主要毒性靶器官[5]。因此,宫炎康颗粒中柴胡和延胡索可能在该患者的肝损害中发挥重要作用。
替硝唑作为新一代硝基咪唑类药物,常用于抗厌氧菌以及原虫。替硝唑在药品说明书以及现有报道中的不良反应一般是轻微和自限性的,主要包括恶心、呕吐、腹痛、便秘、厌食以及口腔金属味等胃肠道反应,皮疹、瘙痒、头痛和眩晕等不适,以及白细胞或中性粒细胞减少、双硫仑反应或黑尿等。替硝唑可能引起的严重不良反应主要包括过敏性休克或过敏性哮喘、癫痫或精神障碍、肾损害或肾衰竭等[6-7]。目前,有关替硝唑引起肝损害的报道较少,只有较早的1例牙周炎患者口服替硝唑胶囊后出现严重药物性肝损害[8]。本病例患者在发病前后未服用其他药物,因此推测宫炎康颗粒和替硝唑胶囊可能是引起急性药物性肝损害的原因。
药物性肝损害的发病机制复杂,至今尚未完全阐明,而中(成)药制剂以及抗感染药物是国内报道的最主要病因[1]。目前,药物性肝损害机制研究的热点是特异质性肝毒性,即与机体的基因多态性和表观遗传学差异具有重要相关性,而与药物的剂量不呈依赖性[1]。
宫炎康颗粒联合抗生素是目前常用的治疗慢性盆腔炎方法之一,尤其是宫炎康颗粒联用甲硝唑或替硝唑,两种药物均为常规剂量,疗程一般为2周时间,能够明显改善患者症状,降低不良反应风险以及疾病复发率[9-11]。针对细菌性阴道病以及滴虫性阴道炎,替硝唑与第一代硝基咪唑类药物甲硝唑相比,具有更好的疗效和安全性[12-13]。本病例患者的宫炎康颗粒和替硝唑胶囊均按照说明书常规剂量服用,未出现剂量过高或超说明书用药的情况,而且用药时间未超过常规的2周疗程,因此推测药物性肝损伤是由特异质性肝毒性引起。
目前,中成药联合抗菌药物广泛应用于多种疾病的治疗中,具有较好的应用前景。本病例首次报道了中成药宫炎康颗粒联用抗菌药物替硝唑胶囊后出现急性药物性肝损害,提示临床医生、临床药师以及患者,在联合治疗时应密切关注用药前后变化,定期监测肝功能指标,尤其是肝功能不全患者更应该慎重,以减少药物性肝损害的发生,提高用药安全性。
-
表 1 Box-Behnken 试验设计因素与水平
因素 水平 −1 0 1 料液比(A) 5 10 15 超声时间(B) 20 30 40 超声提取温度(C) 40 50 60 表 2 提取金线莲多糖方法比较
表 3 Box-Behnken试验设计方案及结果
实验号 A B C 多糖提取率(%) 1 −1.000 0.000 −1.000 12.22 2 1.000 0.000 −1.000 10.16 3 0.000 1.000 −1.000 13.13 4 0.000 0.000 0.000 13.03 5 1.000 0.000 1.000 12.98 6 0.000 −1.000 −1.000 10.86 7 −1.000 −1.000 0.000 11.19 8 0.000 0.000 0.000 13.21 9 0.000 1.000 1.000 12.28 10 0.000 −1.000 1.000 12.25 11 −1.000 1.000 0.000 11.88 12 1.000 −1.000 0.000 11.08 13 0.000 0.000 0.000 13.12 14 0.000 0.000 0.000 12.85 15 −1.000 0.000 1.000 10.83 16 1.000 1.000 0.000 12.11 17 0.000 0.000 0.000 13.21 表 4 模型回归系数显著性检验结果
来源 平方和 自由度 均方 F P 模型 15.41 9 1.71 51.68 < 0.0001 A 5.513×10−3 1 5.513×10−3 0.17 0.6955 B 2.02 1 2.02 60.98 0.0001 C 0.49 1 0.49 14.64 0.0065 AB 0.029 1 0.029 0.87 0.3814 AC 4.43 1 4.43 133.76 < 0.0001 BC 1.25 1 1.25 37.87 0.0005 A2 4.65 1 4.65 140.33 < 0.0001 B2 0.92 1 0.92 27.87 0.0011 C2 0.99 1 0.99 29.99 0.0009 残差 0.23 7 0.033 失拟项 0.14 3 0.047 2.07 0.2463 纯误性 0.091 4 0.023 总离性 15.64 16 -
[1] 朱建军, 黄雨佳, 金建红, 等. 不同栽培基质对金线莲3种基原植物生长及其活性成分含量的影响[J]. 中国中药杂志, 2019, 44(12):2467-2471. [2] YE S Y, SHAO Q S, ZHANG A L. Anoectochilus roxburghii: a review of its phytochemistry, pharmacology, and clinical applications[J]. J Ethnopharmacol,2017,209:184-202. doi: 10.1016/j.jep.2017.07.032 [3] 张晓辉. 金线莲多糖结构分析及抗糖尿病活性研究[D]. 汕头: 汕头大学, 2011. [4] 宋逍, 赵鹏, 段玺, 等. 穿山龙多糖脱蛋白工艺研究[J]. 中药材, 2016, 39(5):1110-1113. [5] CHENG H, HUANG G L. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide[J]. Int J Biol Macromol,2018,114:415-419. doi: 10.1016/j.ijbiomac.2018.03.156 [6] YANG B, YANG Y, WANG X F, et al. Optimization of deproteinized process from Echinops latifolius Tausch polysaccharide by response surface methodology[J]. Sci Technol Food Ind,2014,35(10):287-291. [7] 张松柏, 陈磊, 许文, 等. 优化苯酚硫酸法测定金线莲中多糖含量[J]. 福建中医药, 2019, 50(4):58-60. doi: 10.3969/j.issn.1000-338X.2019.04.021 [8] 潘晓丽, 李萍, 郑小香, 等. 超声波法提取金线莲多糖的工艺研究[J]. 黑龙江畜牧兽医, 2015, 23:201-203. [9] 刘帅, 莫俊恺, 潘丹阳, 等. 桑黄多糖的药理作用及提取方法研究进展[J]. 生物技术通报, 2018, 34(12):63-67. [10] 李萍, 潘晓丽, 郑小香, 等. 金线莲多糖提取工艺研究[J]. 安徽农业科学, 2015, 43(13):105-107. doi: 10.3969/j.issn.0517-6611.2015.13.039 -