-
放线菌是天然药用活性分子的重要源头[1]。然而,近年陆生放线菌来源化合物的重复发现率日趋增高,海洋来源放线菌因其特殊的生长环境和丰富的次生代谢产物越发引起关注[1-2]。
海绵作为代表性的海洋底栖共生生物体,是产生功能分子的重要源头[3]。而越来越多的证据表明共附生微生物是海绵化学多样性的重要来源[4-6]。因此,开展海绵共附生微生物化学成分的研究,寻找新颖的、具有活性功能的小分子化合物显得十分必要。
课题组从海绵共附生放线菌Streptomyces sp. LHW2432发酵物中发现了2个生物碱类化合物1和2,以及3个吡喃酮类化合物3~5(图1)。其中,1为新型天然产物,具有抑制耐甲氧西林金黄色葡萄球菌(MRSA)和耻垢分支杆菌的微弱活性,并可作为合成神经细胞保护剂三环咔唑类生物碱的关键前体[7]。
-
Agilent 600 MHz 核磁共振仪(Agilent);Xevo G2-XS QTOF质谱仪(Waters);Acquity UPLC 高效液相色谱仪(Waters);Interchim PuriFlash 450中压色谱仪(Interchim);ODS(YMC,C18,21.2 mm × 250 mm,5 μm);XBridge C18半制备型液相色谱柱(Waters, XBridge Prep C18,10 mm × 250 mm,5 μm);C18制备型液相色谱柱(Phenomenex,Luna C18,21.2 mm × 250 mm,5 μm);N-1000型旋转蒸发仪(上海爱郎);SK5200H型超声仪(上海科导);振荡培养箱(上海知楚);培养箱(上海博远)。色谱级溶剂(Merk);分析纯试剂(上海化学试剂公司);氘代试剂(Cambridge Isotope Laboratories)。
-
TSBY培养基:胰蛋白胨大豆肉汤(30 g/L)、酵母提取物(5 g/L)、蔗糖(100 g/L)、消泡剂(1 ml/L);SFM培养基:低温黄豆饼粉(20 g/L)、琼脂(20 g/L)、甘露醇(20 g/L),pH 7.2~7.4;MH培养基(Solarbio®):MH肉汤(22 g/L);PDA培养基:马铃薯(200 g/L)、琼脂(20 g/L)、葡萄糖(20 g/L)。
-
链霉菌LHW2432分离自南海海绵(红色指状,种属未鉴定,本实验室编号1524),经16S rRNA基因序列(1376 bp)比对,与Streptomyces purpurascens相似度达99.42%,鉴定为链霉菌。
指示菌蕈状芽胞杆菌(Bacillus mycoides)、耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus CICC10201)、耻垢分支杆菌(Mycobacterium smegmatis mc2155)、大肠杆菌(Escherichia coli)和白色念珠菌(Candida albicans)均取自上海交通大学医学院仁济医院药学部海洋药物研究中心菌种库。
-
将LHW2432接种于SFM平板,30 ℃培养5 d,挑取单菌落接种于装有10 ml TSBY培养基的100 ml三角瓶中(加有不锈钢弹簧),30 ℃,220 r/min培养3 d,作为一级种子液;一级种子液以1∶20(V/V)接种于装有150 ml TSBY培养基的500 ml三角瓶中(加有不锈钢弹簧),30 ℃,220 r/min培养3 d,该发酵液作为二级种子液,继续同样条件的发酵,最终得到12 L发酵液。用等体积乙酸乙酯萃取发酵液3次,萃取液浓缩悬干后得到11.3 g浸膏。
-
通过正相硅胶柱色谱分离粗浸膏,二氯甲烷-甲醇洗脱梯度:150∶1、100∶1、80∶1、50∶1、25∶1、15∶1、5∶1、1∶1,共得到13个馏分A~M。合并F与G馏分(1.91 g干重)后经中压ODS色谱柱继续分离[乙腈-水(0.1%甲酸):5%~95%梯度洗脱,6 h,15 ml/min],得到16个馏分FG1~FG16。
化合物1(3.1 mg)和4(7.7 mg)由FG12(42.3 mg干重)馏分经制备型HPLC分离获得,洗脱条件为:9 ml/min,53%甲醇-水(0.1%甲酸)。
化合物3(9.0 mg)和5(2.1 mg)由FG10(37.4 mg干重)馏分经制备型HPLC分离获得。FG10经洗脱[9 ml/min,42%甲醇-水(0.1%甲酸)]得到化合物3和组分FG10-5(7.5 mg干重);组分FG10-5进一步洗脱得到化合物5,洗脱条件为:3 ml/min,30%乙腈-水(0.1%甲酸)。
化合物2(121 mg)分离自馏分J。J馏分(4.357 g干重)经凝胶柱色谱[流动相:二氯甲烷-甲醇(1∶1)]砍断得到5个亚馏分J1~J5。选取J4(1.112 g干重)再经中压ODS柱色谱[甲醇-水(0.1%甲酸):10%~95%梯度洗脱,2 h,15 ml/min]分离获得化合物2。
-
如表1所示,将200 μl~2 ml过夜生长的5种指示菌的菌液加入水解酪蛋白琼脂培养基(MHA)或马铃薯葡萄糖琼脂培养基(PDA)中(约50 ℃)稀释,摇匀后倒入培养皿中。待凝固后,滴加溶解于3 μl DMSO溶液的样品(约10 μg),设置一个阳性对照和一个DMSO阴性对照,平板于相应条件培养12 h后观察抑菌圈(表1)。
表 1 5种指示菌平板培养条件及遴选的阳性对照药
指示菌 培养条件 阳性药 B. mycoides(蕈状芽胞杆菌) MHA, 37 ℃ 万古霉素 S. aureus(金黄色葡萄球菌) MHA, 37 ℃ 万古霉素 M. smegmatis(耻垢分支杆菌) MHA, 37 ℃ 卡那霉素 E. coli(大肠杆菌) MHA, 37 ℃ 萘啶酮酸 C. albicans(白色念珠菌) PDA, 30 ℃ 两性霉素 -
使用肉汤稀释法进行96孔板实验[8]。样品和阳性对照药分别设置3个平行组,先将过夜培养的指示菌用MH肉汤培养基进行1 000倍稀释后加入96孔板,每孔50 μl。第1列至第10列样品浓度依次为128、64、32、16、8、4、2、1、0.5、0.25 μg/ml。加样后37 ℃培养18 h,通过分光光度计(A600)检测菌液澄清度。最后,根据实验结果调整测试药物浓度梯度,重复实验。
-
化合物1:红棕色固体。ESI-MS m/z 270.1133 [M+H]+(calcd for C16H16NO3,270.112 5),提示其相对分子质量为269,推测该化合物结构中含有一个N原子,结合1H-NMR和13C-NMR确定其分子式为C16H15NO3,计算其不饱和度为8。1H-NMR在低场区显示出4个芳烃质子信号δH 7.85 (1H,m)、7.51 (1H,m)、7.23 (2H,dd,J = 6.0,3.1 Hz),高场区显示2个甲基质子信号δH 1.92 (3H,s)和1.25 (3H,d,J = 6.1 Hz),1个亚甲基质子信号δH 2.77 (2H,m),1个连氧次甲基质子信号δH 3.96 (1H,dt,J = 8.0,6.1 Hz);13C-NMR和DEPT谱,在低场区显示出2个羰基碳信号 (δC 172.8,183.6)、4个芳基次甲基碳信号 (δC 113.4,120.2,123.9,124.1),6个芳基或双键季碳信号 (δC 110.9,125.7,134.8,137.1,139.8,146.5),在高场区显示出2个甲基碳信号 (δC 12.2,23.8)、1个亚甲基碳信号 (δC 37.8) 和1个连氧次甲基碳信号 (δC 65.9);将波谱信号进行归属,1H-NMR (600 MHz,DMSO-d6):δ 7.85 (m,H-5),7.51 (m,H-8),7.23 (dd,J = 6.0,3.1 Hz,H-6,7),3.96 (dt,J = 8.0,6.1 Hz,H-11),2.76 (m,H-10),1.92 (s,H-13),1.25 (d,J = 6.1 Hz,H-12)。13C NMR (151 MHz,DMSO-d6):δ 183.6 (C-3),172.8 (C-4),146.5 (C-9a),139.8 (C-1),137.1 (C-8a),134.8 (C-2),125.7 (C-4b),124.1 (C-7),123.9 (C-6),120.2 (C-5),113.4 (C-8),110.9 (C-4a),65.9 (C-11),37.8 (C-10),23.8 (C-12),12.2 (C-13)。化合物数据与文献[9-10]报道一致,结构鉴定为咔唑-3,4-邻醌生物碱descycloavandulyl-lavanduquinocin。
化合物2:白色无定型粉末。ESI-MS m/z 180.1022 [M+H]+(calcd for C10H14NO2,180.101 9),相对分子质量为179,说明该化合物可能含有一个N原子,结合13C-NMR确定其分子式为C10H13NO2,计算不饱和度为5。1H-NMR中包含4个芳烃质子信号δH 6.97 (2H,m)、6.67 (2H,m),结合13C-NMR中的6个双键碳信号,推断该化合物中含有一个对位二取代的苯环,其中一个碳信号 (δC 155.6) 化学位移值向低场偏移,说明是一个连氧取代的芳基碳原子;归属该化合物的波谱信号,1H-NMR (600 MHz,DMSO-d6):δ 9.20 (brs,1′-OH),7.87 (t,J = 5.5 Hz,1-NH),6.97 (m,H-3′,H-5′),6.67 (m,H-2′,H-6′),3.17 (m,H-8′),2.56 (dd,J = 8.4,6.6 Hz,H-7′),1.77 (s,H-2);13C NMR (151 MHz,DMSO-d6):δ 169.1 (C-1),155.6 (C-1′),129.6 (C-4′),129.5 (C-1′,C-5′),115.1 (C-2′,C-6′),40.6 (C-8′),34.5 (C-7′),22.7 (C-2)。与文献数据[11-12]比对,该化合物被鉴定为N-乙酰酪胺(N-acetyltyramine)。
化合物3:淡黄色固体。ESI-MS m/z 183.1028 [M+H]+(calcd for C10H15O3,183.101 6),提示其相对分子质量为182,结合1H和13C-NMR数据推测其分子式为C10H14O3,不饱和度为4。1H-NMR的低场区显示出一个双键质子信号δH 5.95 (1H,s),高场区显示3个甲基质子信号δH 0.81 (3H,t,J = 7.4 Hz)、1.10 (3H,d,J = 6.9 Hz) 和1.73 (3H,s),1对亚甲基质子信号δH 1.54 (1H,m)、1.44 (1H,m),1个次甲基质子信号δH 2.43 (1H,m);13C-NMR和DEPT谱显示共有10个碳信号,包括4个双键或羰基季碳信号,1个sp2杂化的双键次甲基碳信号,1个sp3杂化的次甲基碳信号,1个sp3杂化的亚甲基碳信号,3个甲基碳信号。如下为化合物的波谱信号归属,1H-NMR (600 MHz,DMSO-d6):δ 5.95 (s,H-5),2.43 (m,H-7),1.73 (s,H-11),1.54 (m,H-8a),1.44 (m,H-8b),1.10 (d,J = 6.9 Hz,H-10),0.81 (t,J = 7.4 Hz,H-9)。13C NMR (151 MHz,DMSO-d6):δ 165.8 (C-2),165.5 (C-4),165.2 (C-6),98.9 (C-5),96.2 (C-3),38.7 (C-7),26.9 (C-8),17.7 (C-10),11.3 (C-9),8.5 (C-11)。结合比对文献[13]核磁谱图数据,该化合物鉴定为phomapyrone C。
化合物4:棕色固体。ESI-MS m/z 197.1181 [M+H]+(calcd for C11H17O3,197.1172),提示其相对分子质量为196,结合1H和13C-NMR数据推测其分子式为C11H16O3,不饱和度为4。比较化合物4和3的核磁数据,发现4的1H-NMR低场区存在一个双键质子信号δH 5.95 (1H,s),13C-NMR 低场区存在4个双键或羰基季碳信号 (δC 165.8,165.2,164.7,102.5)、1个双键次甲基碳信号 (δC 98.8),这些核磁数据与化合物3的吡喃-2-酮单元的数据基本一致,提示其存在一个相同的骨架结构。化合物4和3的结构不同之处在于,化合物4的1H和13C -NMR数据中多一个亚甲基信号 (δH 2.26,δC 16.2)。其信号具体归属如下:1H-NMR (600 MHz,DMSO-d6):δ 5.93 (s,H-5),2.42 (m,H-7),2.26 (q,J = 7.4 Hz,H-11),1.55 (m,H-8a),1.44 (m,H-8b),1.10 (d,J = 6.9 Hz,H-10),0.94 (t,J = 7.4 Hz,H-12),0.81 (t,J = 7.4 Hz,H-9)。13C NMR (151 MHz,DMSO-d6):δ 165.8 (C-2),165.2 (C-4),164.7 (C-6),102.5 (C-3),98.8 (C-5),38.7 (C-7),26.8 (C-8),17.6 (C-10),16.2 (C-11),12.6 (C-12),11.4 (C-9)。以上数据与文献[14]基本一致,故被鉴定为germicidin A。
化合物5:棕色固体。ESI-MS显示[M+ H]+分子离子峰m/z 183.1021(calcd for C10H15O3,183.101 6),确定其相对分子质量为182,结合1H和13C-NMR数据确定其分子式为C10H14O3,不饱和度为4。该化合物氢谱存在一个双键质子δH 5.95 (1H,s) 信号,碳谱存在4个季碳信号 (δC 165.8,165.2,164.7,102.5)、1个双键次甲基碳信号 (δC 98.8),提示其含有和化合物3一样的吡喃-2-酮骨架结构。化合物5和3的分子量相同,是同分异构体,但其1H和13C -NMR数据中存在特征性的偕甲基信号 [δH 0.88 (H-9,H-10),δC 21.9 (C-9,C-10)]。具体的信号归属如下:1H-NMR (600 MHz,DMSO-d6):δ 5.92 (s,H-5),2.25 (d,J = 7.2 Hz,H-7),1.90 (m,H-8),1.72 (s,H-11),0.88 (d,J = 6.6 Hz,H-9,H-10)。13C NMR (151 MHz,DMSO-d6):δ 165.3 (C-2),165.2 (C-4),161.2 (C-6),101.1 (C-5),95.9 (C-3),41.7 (C-7),26.3 (C-8),21.9 (C-9),21.9 (C-9),8.5 (C-11)。以上数据与文献[15]基本一致,故被鉴定为germicidin I。
-
平板涂布结果显示:化合物1仅对MRSA和耻垢分支杆菌出现中等大小抑菌圈,阳性药物对相应指示菌均产生显著大小抑菌圈,其他化合物未使5种指示菌产生明显抑菌圈。
-
根据初筛结果,以MRSA和耻垢分支杆菌为指示菌,采用微量稀释法,最终确定化合物1对MRSA和耻垢分支杆菌的MIC值分别为100和64 μg/ml。
-
生物碱是一类含氮的天然药用分子,抗癌药紫杉醇、止痛药吗啡和抗疟疾的奎宁类药物均属此类[16]。文献报道,具有脂肪族侧链的三环咔唑生物碱可通过自由基清除作用保护神经细胞[9,17-18],例如lavanduquinocin,neocarazostatins和carquinostatins[7,19-20]。
课题组以一株中国南海海绵共附生链霉菌Streptomyces sp. LHW2432为研究对象,发现了2个生物碱类化合物1和2,以及3个吡喃酮类化合物3~5(图1)。化合物2此前发现于真菌和放线菌中[21-22],具有自由基清除功能[23]。有报道化合物3~5在链霉菌形态分化中具有抑制产孢的功能[24]。化合物1为三环咔唑生物碱类新天然产物,课题组发现其具有抑制MRSA和耻垢分支杆菌的微弱活性。此外,化合物1可作为化学合成药用活性三环咔唑类生物碱的重要前体[9],本研究首次发现了产生化合物1的宿主菌,为通过发酵手段廉价获取该中间体分子提供了可能。
Study on secondary metabolites from sponge-symbiotic Streptomyces sp. LHW2432
-
摘要:
目的 从海绵共附生菌Streptomyces sp. LHW2432的发酵产物中发现药用活性分子。 方法 采用正向硅胶柱、ODS反向柱以及高效液相色谱分离技术,对LHW2432的发酵萃取物进行分离纯化;通过现代波谱技术和文献调研确定化合物结构;利用平板涂布法和微量稀释法,评价化合物对芽胞杆菌、耐甲氧西林金黄色葡萄球菌(MRSA)、耻垢分支杆菌、白色念珠菌和大肠杆菌的抑菌活性。 结果 从LHW2432发酵物中共分离鉴定了5个化合物:descycloavandulyl-lavanduquinocin ( 1 )、N-acetyltyramine ( 2 )、phomapyrone C ( 3 )、germicidin A ( 4 ) 和germicidin I ( 5 )。化合物 1 对MRSA和耻垢分支杆菌的最小抑菌浓度(MIC)值分别为100和64 μg/ml。 结论 从LHW2432菌中分离得到5个化合物,其中,化合物 1 是新天然产物,可作为神经保护活性三环咔唑类生物碱的合成前体,其对G+菌有微弱的抑制活性。 Abstract:Objective To discover the medicinal active molecules from the fermentation extract of sponge-symbiotic Streptomyces sp. LHW2432. Methods Compounds were isolated and purified from the fermentation extract of LHW2432 by silica gel, ODS chromatographic columns, and HPLC. The structures of the compounds were elucidated based on the analyses of modern spectrum technologies and the related literatures research. Through plate coating method and broth microdilution method, the antimicrobial activities were tested by the indicator strains of Bacillus mycoides, methicillin-resistant Staphylococcus aureus (MRSA), Mycobacterium smegmatis, Candida Albicans, and Escherichia coli. Results Five compounds were discovered and their structures were identified as descycloavandulyl-lavanduquinocin ( 1 ), N-acetyltyramine ( 2 ), phomapyrone C ( 3 ), germicidin A ( 4 ), and germicidin I ( 5 ). Compound 1 showed inhibitory activities against MRSA (MIC, 100 μg/ml) and M. smegmatis (MIC, 64 μg/ml), respectively. Conclusion Five compounds were discovered from LHW2432, among which compound 1 was a new natural product and could be used as a precursor of the tricyclic carbazole alkaloids with neuroprotective activity. Moreover, compound 1 showed weak inhibitory activities against gram-positive pathogenic bacteria. -
补体系统是人体重要的免疫防御系统之一,是由30多种广泛存在于血清、组织液和细胞膜表面的蛋白质组成的,具有精密调控机制的蛋白质反应系统,其主要通过3种途径激活:经典途径、旁路途径和甘露糖结合凝集素途径。补体系统正常激活,可在靶细胞上形成膜攻击复合物,导致靶细胞的溶解,补体的这一功能在机体的免疫系统中起重要的防御和免疫监视作用,对抵御外来微生物的入侵和维持机体平衡有重要的作用。然而该系统的过度激活将释放炎性过敏毒素C3a和C5a,具有化学诱导作用的C5a能趋化嗜中性粒细胞、中核细胞和嗜酸性粒细胞,这些细胞释放蛋白酶和具有趋化作用细胞因子,进一步聚集T、B淋巴细胞和其他炎性细胞,从而促进炎症反应的发生,引起系统性红斑狼疮、类风湿性关节炎、动脉粥样硬化、肾小球肾炎等[1-2]。近年来已有研究表明[3],补体系统的激活是类风湿性关节炎中慢性滑膜炎的发病因素之一。因此,抑制补体系统的过度激活可能是治疗类风湿性关节炎的重要机制之一。
三色片为复旦大学附属中山医院的院内制剂,由雷公藤、黄芪和丹参三味药材按1∶1∶1的比例配伍组成,在临床上用于治疗类风湿性关节炎、系统性红斑狼疮、银屑病和湿疹等结缔组织疾病。我院临床医生在长期的医疗实践中总结出来的经验方,效果显著[4]。组方中雷公藤,性味辛寒,有大毒,归肝、肾经,具有清热解毒、活血化瘀、通络止痛、杀虫止痒等功效。现代研究表明,雷公藤内酯醇对大鼠脑皮质内注射β-淀粉酶后补体C1q和C3的表达有抑制作用,表明雷公藤对补体系统有抑制作用,目前临床上广泛用于治疗类风湿性关节炎、系统性红斑狼疮、银屑病和湿疹等结缔组织疾病[5]。组方中的黄芪用于脾肺气血或中气下陷之症、卫气虚所致表虚自汗、气虚血滞导致的肢体麻木、关节痹痛等症,可联合治疗类风湿性关节炎[6]。黄芪在治疗2型糖尿病大鼠的研究中发现其能降低补体C3的水平,表明其对补体系统具有一定的调节作用[7-8]。丹参是最常用的活血化瘀中药之一,具有祛瘀止痛,养血安神的功效,现代药理学研究表明其还具有保护肝脏的功能[9],可拮抗雷公藤的肝毒性。本研究通过经典途径抗补体活性测定方法筛选出三色片醇提物的乙酸乙酯部位抗补体活性最佳,并采用UPLC-Q-TOF-MS法对该部位的化学成分进行结构表征,为三色片抗补体活性药效物质基础及治疗补体过度激活相关疾病提供科学依据。
1. 仪器、试剂与材料
Tripie TOF5600+型四级杆-飞行时间串联质谱仪,配备电喷雾电离源和CDS自动校正系统(美国Applied Biosystems公司);Peak view2.2和Master view1.1数据处理系统(美国Applied Biosystems公司);LC-30A超高效液相色谱仪,包括高压输液泵,自动进样器,柱温箱和在线脱气机(日本岛津公司);KQ5200E型超声清洗器(昆山市超声仪器有限公司);甲醇、乙腈(色谱纯,德国Merck公司);甲酸(色谱纯,美国Sigma-Aldrich公司); 蒸馏水(娃哈哈集团);三色片提取物由作者自制,现样品存放于复旦大学附属中山医院药剂科(SSP2018);补体、溶血素(自制);毛蕊异黄酮(批号:ST088101),雷公藤甲素(批号:ST020501),雷公藤内酯酮(批号:ST049901),丹参酮II A(ST014601)、黄芪甲苷(ST001601)(纯度≥ 98%,均购自上海斯丹德生物技术有限公司)。
2. 方法
2.1 三色片醇提物及各极性部位的制备
雷公藤、黄芪和丹参三味药材按1∶1∶1配伍,其中,黄芪和丹参加6倍量的水浸泡2 h后,煎煮2次,第一次1.5 h,第二次加水4倍量煎煮1 h,煎液滤过,合并滤液并浓缩至相对密度为1.10~1.20(70 ℃),加入2倍量的乙醇,静置沉淀24 h,取上清液备用。雷公藤分别加4倍量的乙醇加热回流2次,每次1.5 h,合并提取液,滤过,加入上述备用药液,混匀,回收乙醇至无醇味,浓缩后即得三色片醇提物,经现有的质量标准检验为制备三色片制剂合格的提取物。精密称取三色片醇提物2.0 g,置于100 ml萃取瓶中,加25 ml蒸馏水溶解后,用等量的石油醚、乙酸乙酯和正丁醇进行萃取,浓缩干燥后,放冷至室温,得到三色片醇提物的石油醚部位0.36 g,乙酸乙酯部位0.42 g,正丁醇部位0.56 g和水溶性部位。
2.2 经典途径的抗补体活性测定
取各极性部位样品2 mg溶于DMSO,采用BBS缓冲液稀释成不同浓度的样品,并加入临界浓度的补体(1∶80稀释的豚鼠血清),溶血素和2%绵羊红细胞(SRBC)。37 ℃水浴30 min,离心后取上清液在405 nm波长下测定吸光度(A)值。同时设置中药对照组(将等量的中药提取物加入BBS缓冲液中,用于测定中药本底A值)、补体组(取临界浓度的补体直接加入适量的BBS缓冲液、溶血素和2%SRBC,用于测定临界浓度补体所造成红细胞溶血的A值)和全溶血组(将2%SRBC加入水中使之全溶血,用于观察补体组是否达到或接近全溶血水平),并以肝素作为阳性对照组,计算溶血抑制率。以供试品浓度为横坐标(X),溶血抑制率为纵坐标(Y),计算CH50(经典途径50%抑制溶血所需供试品浓度)。溶血抑制率=1−(A中药−A中药对照)/A全溶血。
2.3 不同浓度的样品色谱与质谱条件
2.3.1 色谱条件
色谱柱为ACQUITY UPLC BEH C18(2.1 mm×100 mm,1.7 μm);流动相0.1%甲酸和水溶液(A)−乙腈(B);梯度洗脱:0~9 min,10%~23% B;9~13 min,23% B;13~28 min,23%~40% B;28~32 min,40%~50% B;32~37 min,50%~100% B;37~42 min,100% B;42~42.1 min,10%B;42.1~50 min,10% B;流速为0.25 ml/min,柱温为35 ℃;进样量为2 μl。
2.3.2 质谱条件
在正/负离子模式,离子源选择电喷雾离子化源(ESI);使用m/z 50~1250扫描范围;碰撞能量35 eV,碰撞能量叠加(35±15)eV;喷雾电压5 500 V;雾化气温度550 ℃;去簇电压100 V;雾化气和辅助气均为50 psi;气帘气25 psi;数据采集时间50 min;采用母离子触发的子离子(TOF-MS-IDA-MS/MS)扫描方式;多重质量亏损和动态背景扣除为触发二级的条件,满足该条件进行二级扫描。
2.4 对照品溶液的制备
精密称取毛蕊异黄酮、雷公藤甲素、雷公藤内酯酮、丹参酮Ⅱ A和黄芪甲苷对照品1.0 mg,加甲醇2 ml,溶解,摇匀,即得各对照品溶液。
2.5 供试品溶液的制备
取三色片醇提物的乙酸乙酯部位样品0.2 g,置于10 ml量瓶中,加入70%甲醇5 ml,超声处理(功率250 W,频率40 kHz)30 min,放冷至室温,70%甲醇定容至刻度,摇匀,滤过,取续滤液,即得供试品溶液。
2.6 三色片中化学成分数据库的建立
根据三色片中各药材化学成分研究文献,收集3种药材所含化合物成分的基本信息,包括化合物名称、分子式、精确分子量、准分子离子峰和碎片离子峰。通过精确分子量匹配,对照品的保留时间,二级谱所得到的离子碎片与文献报道进行比对,最终确定化合物的结构。
3. 结果与分析
3.1 三色片醇提物各极性部位的抗补体活性
分别对三色片醇提物的石油醚部位、乙酸乙酯部位和正丁醇部位进行经典途径的抗补体活性测定,以肝素为对照品,结果发现乙酸乙酯部位的抗补体活性最好,其抗补体活性略低于肝素钠,其次是正丁醇部位,结果见表1。
表 1 三色片提取物不同部位抗补体活性测定编号 研究对象 抗补体活性(CH50,μg/ml) 1 肝素 14.4±1.2 2 三色片-石油醚部位 − 3 三色片-乙酸乙酯部位 233.9±10.1 4 三色片-正丁醇部位 344.0±14.5 注:“—”表示该部位无抗补体活性。 3.2 三色片醇提物乙酸乙酯部位的UPLC-Q-TOF-MS分析
精密吸取对照品溶液和供试品溶液2 μl,采用“2.1”项下的色谱与质谱条件对样品进行分析,通过正、负离子全扫描,获得正、负离子模式下的总离子流图,见图1。
通过与对照品比对,分子离子峰质谱数据解析,与参考文献比对,共鉴定出三色片醇提物乙酸乙酯部位42个化合物,结果见表2。
表 2 三色片提取物中各成分主要碎片离子及谱峰归属化合物
编号tR/min 分子式 理论值(m/z) 模式 实测值(m/z) 误差(×10−6) 碎片离子(m/z) 化合物名称 参考文献 1 3.54 C7H6O3 139.039 0 [M+H]+ 139.039 4 3.0 121.028 7 原儿茶醛 [10] 2 4.76 C21H27N3O3 370.212 5 [M+H]+ 370.214 3 4.8 249.124 6,160.112 6,95.013 3,166.086 6,100.076 2,91.054 8 南蛇藤糠酰胺碱 [11] 3 6.63 C22H22O10 447.128 6 [M+H]+ 447.130 4 4.2 285.077 5,270.053 5,253.050 8,225.055 6,137.023 5 毛蕊异黄酮-7-O-β-D-葡萄糖苷 [12] 4 7.04 C23H29N3O2 380.233 3 [M+H]+ 380.235 1 4.8 176.106 9,160.112 6,105.033 8,100.076 5 苯代南蛇碱 [11] 5 9.41 C9H10O5 197.045 6 [M-H]− 197.044 7 −4.2 179.038 3,135.044 3 丹参素 [10] 6 9.42 C9H8O4 179.035 0 [M-H]− 179.034 2 4.7 135.044 8 咖啡酸 [13] 7 11.16 C16H12O4 431.133 7 [M+H]+ 431.136 3 6.1 269.082 6,253.050 3,225.055 5,213.091 7,197.060 2,136.014 6,118.041 7 芒柄花苷 [12] 8 12.71 C16H12O5 285.075 8 [M+H]+ 285.077 4 5.7 270.053 4,253.050 3,225.055 3,137.023 5 毛蕊异黄酮* [12] 9 12.76 C17H16O5 301.107 1 [M+H]+ 301.109 0 6.4 167.070 8,152.047 3,147.043 2,105.034 0,123.043 3 astrapterocarpan [12] 10 13.06 C20H24O6 361.164 6 [M+H]+ 361.166 5 5.5 269.154 3,227.108 3,185.096 9,157.101 7,129.070 3,91.054 9 雷公藤甲素* [14-15] 11 13.92 C17H14O6 315.086 3 [M+H]+ 315.088 1 5.6 300.064 7,243.065 5,167.034 2 熊竹素 [16] 12 18.21 C18H12O7 341.065 6 [M+H]+ 341.066 9 3.9 295.060 7,277.050 9,249.056 0 丹酚酸G [17] 13 19.76 C26H20O10 491.098 4 [M-H]− 491.097 0 −2.9 311.054 9,293.044 6,267.064 6,135.044 7 丹酚酸C [18] 14 21.46 C16H12O4 269.080 8 [M+H]+ 269.082 7 4.1 253.015 3,237.052 6,225.055 5,213.092 3,136.015 9,118.041 7,197.060 2 芒柄花素 [12] 15 22.57 C36H45NO17 764.276 0 [M+H]+ 764.278 3 2.9 746.276 1,686.246 3,644.235 1,206.081 7,188.070 9,178.086 5 aquifoliunine E-Ⅲ [14] 16 23.45 C20H22O6 359.148 9 [M+H]+ 359.150 7 4.9 267.138 0,225.019 5,183.079 9,128.061 8,91.054 3 雷公藤内酯酮* [19] 17 24.01 C38H47NO19 822.281 5 [M+H]+ 822.284 1 3.2 804.275 8,204.066 2,176.071 4 alatusinnine [20] 18 25.01 C39H45NO19 832.265 9 [M+H]+ 832.269 0 3.8 804.273 3,194.081 9,176.071 2 hypoglaunine E [11] 19 26.14 C41H68O14 829.458 0 [M+COOH]− 829.460 7 3.3 783.457 9,621.404 3,489.357 2 黄芪甲苷* [14] 20 28.19 C38H47NO18 806.286 6 [M+H]+ 806.290 3 3.8 788.279 5,686.247 0,206.082 1, 178.086 5 雷公藤定宁 E [20] 21 28.65 C39H45NO18 816.271 0 [M+H]+ 816.273 9 3.6 798.261 9,756.250 9,206.081 3,178.086 1,160.075 2 1-去乙酰基雷公藤吉碱 [11] 22 28.70 C43H70O15 871.468 6 [M+COOH]− 871.470 8 2.5 825.470 2,765.448 2,489.356 8 黄芪皂苷Ⅱ [13] 23 29.09 C41H47NO20 874.276 4 [M+H]+ 874.278 5 2.3 856.269 2,846.282 9,828.272 3,674.245 1,204.065 6,176.070 7 雷公藤春碱 [11] 24 29.72 C38H47NO18 806.286 6 [M+H]+ 806.291 2 3.8 788.280 4,686.247 4,206.082 4 peritassine A [20] 25 30.24 C43H70O15 871.468 6 [M+COOH]− 871.470 3 2.5 825.464 1,765.440 5 异黄芪皂苷Ⅱ
(异构体1)[16] 26 30.89 C19H16O4 309.112 1 [M+H]+ 309.114 2 6.7 281.667 0,263.106 0,235.076 7 丹参醛 [21] 27 31.58 C43H70O15 871.468 6 [M+COOH]− 871.470 8 2.5 825.470 2,765.448 0 异黄芪皂苷Ⅱ
(异构体2)[13] 28 32.12 C21H20O4 337.143 4 [M+H]+ 337.142 5 −2.7 309.686 6 丹参新醌丁 [10] 29 32.16 C43H49NO19 884.297 2 [M+H]+ 884.299 7 2.8 856.304 5,674.246 0,204.663 0,176.071 2 雷公藤定碱 [14] 30 32.96 C45H72O16 913.479 1 [M+COOH]− 913.482 4 3.5 867.481 7,825.469 8,807.464 3,765.450 6 黄芪皂苷Ⅰ [16] 31 32.99 C41H47NO19 858.281 5 [M+H]+ 858.285 4 4.6 840.275 7,798.263 8,746.269 1,738.243 5,686.248 0,206.082 5,178.087 1 雷公藤晋碱 [20] 32 33.04 C38H47NO18 806.286 6 [M+H]+ 806.289 7 3.8 788.278 3,686.244 4,206.082 1,728.257 0 卫矛碱 [20] 33 33.70 C45H72O16 913.479 1 [M+COOH]− 913.484 7 3.8 867.478 5,825.283 5,807.458 4,765.432 6 异黄芪皂苷Ⅰ
(异构体1)[16] 34 34.60 C45H72O16 913.479 1 [M+COOH]− 913.483 3 3.8 867.477 8,825.282 1,807.456 4,765.443 2 异黄芪皂苷Ⅰ
(异构体2)[16] 35 34.92 C46H49NO22 968.281 9 [M+H]+ 968.286 3 4.5 856.677 0,838.257 4,684.228 8,204.065 6,178.070 8 雷公藤素B [20] 36 35.01 C43H49NO18 868.302 2 [M+H]+ 868.304 6 2.7 868.364 0,850.295 8,746.268 9,686.247 6,206.082 4,178.087 1 雷公藤次碱 [20] 37 35.02 C41H47NO17 826.291 7 [M+H]+ 826.295 1 4.2 808.285 3,748.264 0,206.082 2,178.086 8 tripterygiumine Ⅰ [20] 38 35.49 C19H20O3 297.148 5 [M+H]+ 297.145 0 4.8 251.144 0,279.139 3,254.054 9,268.110 5,282.126 3 隐丹参酮 [10,17] 39 35.70 C20H28O2 299.201 7 [M-H]− 299.199 6 −6.7 283.168 2,213.090 8,201.916 0, 雷酚萜 [22] 40 35.86 C48H51NO18 930.317 9 [M+H]+ 930.321 3 3.7 912.308 7,310.111 0,206.081 8,188.071 2,178.086 5,105.033 6 ebenifoline E-Ⅱ [20] 41 36.81 C19H18O3 295.132 9 [M+H]+ 295.134 9 4.0 277.124 3,249.127 5,266.095 3,262.097 7,280.109 9 丹参酮Ⅱ A* [10,18,23] 42 37.49 C19H22O2 283.169 3 [M+H]+ 283.169 3 0 265.098 1,240.032 2,223.106 7,195.095 8,181.101 1 丹参新酮 [17,21,24] 注:*表示与对照品鉴定的化合物。 3.2.1 黄酮类化合物结构解析
在乙酸乙酯部位中共鉴定出6个黄酮类化合物,其中4个黄酮苷元和2个黄酮苷,苷元为黄酮、异黄酮和紫檀烷,该类化合物在正离子模式下具有较好的响应。二级质谱中黄酮苷元易发生中性丢失,形成[M+H-H2O]+、[M+H-CO]+、[M+H-CH3]+等碎片离子,如在化合物8的二级质谱中可见m/z 270.053 4和m/z 253.050 3,则为m/z 285.077 4分别脱去-CH3和CH3OH形成的[M+H-CH3]+和[M+H-CH3OH]+碎片离子峰,m/z 225.055 3是m/z 253.050 3脱去1分子的CO形成的碎片离子峰,通过对照品的保留时间和参考文献[12]质谱数据比对确定化合物8为毛蕊异黄酮,m/z 137.023 5的碎片离子峰为异黄酮母核C环发生RDA裂解所产生。黄酮苷类易脱去糖基形成较强的分子离子峰,如化合物3(m/z 447.130 4)的二级质谱脱去糖基形成m/z 285.077 5的分子离子峰,并与化合物8(m/z 285.077 4)的二级质谱图非常相似,说明化合物3和化合物8在结构上是相似的,但化合物3的分子量多了162(C6H10O5),通过数据库比对和参考文献[12]推测化合物3则为毛蕊异黄酮-7-O-β-D-葡萄糖苷。化合物9(m/z 301.109 0)通过数据库比对发现两种候选化合物分别为astrapterocarpan和astraisoflavan,二级质谱中主要碎片离子峰为C环裂解产生的含A环和B环片段的碎片离子,其中,m/z 167.070 8为含B环的碎片离子峰且为基峰,进一步脱甲基形成m/z 152.047 3,m/z 123.043 3为含A环的碎片离子峰,进一步脱水形成m/z 105.034 0,m/z 147.043 2为母离子m/z 301.109 0脱去B环形成的碎片离子峰,根据m/z 167.070 8的碎片离子峰为基峰和含有m/z 147.043 2的碎片离子峰这两个特征,结合参考文献[12]的质谱数据,推测该化合物为astrapterocarpan,其相关裂解途径见图2。
3.2.2 三萜皂苷类化合物结构解析
在乙酸乙酯部位中鉴定出7个三萜皂苷类化合物,在负离子模式下均具有较好的响应,一级质谱中产生[M+COOH]−的准分子离子峰,二级质谱中产生较强的[M-H]-碎片离子峰和脱去糖基的较弱的分子离子峰。化合物19在负离子模式下产生的准分子离子峰为[M+COOH]−(m/z 829.458 0),二级质谱中产生m/z 783.457 9[M-H]−峰,脱去1分子六碳糖(C6H10O6)形成m/z 621.404 3的碎片离子峰,m/z 489.357 2则为m/z 621.404 3进一步脱去1分子五碳糖(C5H6O5)后形成的苷元碎片离子峰,推测其苷元为9,19-环阿尔廷烷,通过对照品的保留时间,参考文献[13]的离子碎片比对确定该化合物为黄芪甲苷。
3.2.3 生物碱类化合物结构解析
三色片提取物中共鉴定出16个生物碱类化合物,均来自雷公藤药材,在正离子模式下具有较好的响应,一级质谱中产生[M+H]+的准分子离子峰,二级质谱发现该类型的化合物容易脱去H2O、CO和CH3COOH等中性小分子而产生碎片离子峰,多数生物碱含有吡啶二羧酸部位的碎片离子峰。如化合物23在正离子模式下产生m/z 874.278 5的准分子离子峰,二级质谱中产生脱去1分子CO的m/z 846.282 9的基峰,脱去1分子H2O的m/z 856.2692的碎片离子峰和脱去1分子HCOOH的m/z 828.272 3的碎片离子峰,m/z 674.245 1峰为m/z 846.2829脱去C5H4O3侧链和CH3COOH形成的碎片离子峰,m/z 204.065 6峰为大环开裂产生的吡啶二羧酸部分脱水产生的碎片离子,该离子进一步脱羧形成m/z 176.070 7的碎片离子,通过数据库和参考文献[11]质谱数据的比对,推测化合物23为雷公藤春碱。化合物31在正离子模式下产生m/z 858.285 4的准分子离子峰,二级质谱中产生脱去1分子H2O的m/z 840.275 7的碎片离子峰,准分子离子峰脱去1分子CH3COOH形成较强的m/z 798.263 8峰,在进一步脱去1分子CH3COOH形成738.243 5峰,准分子离子峰m/z 858.285 4脱去FuOH(C5H4O3)侧链形成的m/z 746.269 1的碎片离子峰,再进一步脱去1分子CH3COOH,形成m/z 686.248 0的碎片离子,m/z 206.082 5峰为大环开裂产生的吡啶二羧酸部分脱水产生的碎片离子,该离子进一步脱羧形成m/z 178.087 1的碎片离子,通过数据库和参考文献[20]质谱数据的比对,推测化合物31为雷公藤晋碱。雷公藤晋碱中吡啶二羧酸部分较雷公藤春碱中少一个羟基,故其易产生m/z 206.0825的碎片离子峰,并通过脱羧产生m/z 178.087 1峰。两种化合物的质谱图见图3。以雷公藤晋碱为例,解析此类化合物的裂解规律,见图4。因此得出吡啶二羧酸部分含有羟基的生物碱会产生m/z 204系列的特征碎片离子峰,不含羟基的生物碱则产生m/z 206系列的特征碎片离子峰。
3.2.4 萜类化合物结构解析
本研究共鉴定出8种萜类化合物,其中源于丹参药材中的5种萜类成分,丹参中的萜类化合物因其结构中主要含有羟基,羰基等取代基,所以质谱碰撞中主要丢失H2O,CO和-CH3等中性分子,产生一系列的碎片离子峰。化合物41在正离子模式下产生m/z 295.134 9的[M+H]+准分子离子峰,二级质谱中产生脱去1分子甲基形成的m/z 280.1099的碎片离子峰,在此基础上有丢失1分子水形成m/z 262.097 7峰,准分子离子峰脱去1分子H2O或脱去1个-CHO形成m/z 277.124 3峰或m/z 266.095 3峰,m/z 249.127 5峰是m/z 277.124 3脱去1分子H2O形成的碎片峰,通过对照品的保留时间和参考文献[10,18,23]数据比对,鉴定该化合物为丹参酮Ⅱ A,其质谱裂解规律见图5。
来源于雷公藤药材中的3种二萜类成分,该类化合物的二级质谱中出现一系列的脱水、脱CO和异丙基等碎片离子峰。化合物11在正离子模式下产生m/z 361.166 5的准分子离子峰,脱去2分子H2O和2分子CO形成m/z 269.154 3的碎片离子峰,m/z 227.108 3为m/z 269.154 3脱去1分子CH2CHCH3形成的碎片离子,其进一步脱1分子H2O和HCHO形成m/z 185.096 9的碎片离子,通过对照品比对和参考文献[14-15]的质谱数据,确定化合物10为雷公藤甲素。化合物18在正离子模式下产生m/z 359.148 9的准分子离子峰,脱去2分子H2O和2分子CO形成m/z 267.138 0的碎片离子峰,m/z 225.019 5为m/z 267.138 0脱去1分子CH2CHCH3形成的碎片离子,其进一步脱1分子H2O和HCHO形成m/z 183.0799的碎片离子,通过对照品比对和参考文献[19]的质谱数据,确定化合物16为雷公藤内酯酮。化合物39在负离子模式下产生m/z 299.199 6 的准分子离子峰,二级质谱中产生m/z 283.168 2的碎片离子, 提示为丢失1个-CH3后形成双键产生的碎片离子峰,A环发生RDA裂解产生m/z 213.090 8的碎片离子峰,通过数据库比对和参考文献[22]的质谱数据,推测化合物39为雷酚萜。
3.2.5 酚酸类化合物结构解析
在正负离子模式下共鉴定出乙酸乙酯部位中5种酚酸类成分,均来自于丹参药材,参考文献[18]报道的丹参中酚酸类成分的裂解规律发现,酚酸类化合物主要含有羰基、羧基和羟基,所以在质谱碰撞中易丢失CO、H2O和CO2的中性碎片;丹参素和咖啡酸作为基本母核而其他的水溶性酚酸类化合物大多数为这两者的聚合或缩合产物,主要为缩酚酸类的成分,在质谱碰撞中易丢失[M-H-180]−和[M-H-198]−中性碎片;含有羧基的单体化合物在负离子模式下会产生135[C8H7O2]−和179[C9H7O4]−的特征性碎片。化合物5中,在负离子模式下产生m/z 197.044 7的[M-H]−准分子离子峰,二级质谱进一步产生丢失1分子H2O和1分子CO2,形成的m/z 179.038 3和m/z 135.044 3的碎片离子峰,推测出结构中含有羧基,结合其精确分子量和参考文献[10]质谱数据,推测该化合物为丹参素。化合物12中,负离子模式下产生m/z 491.097 0的[M-H]−准分子离子峰,二级质谱中产生m/z 311.054 9和m/z 293.044 6的碎片离子峰,分别为[M-H-180]−和[M-H-198]−, m/z 267.064 6峰为m/z 311.054 9脱去1分子CO2所产生,根据m/z 135.044 7峰推测结构中含有羧基,结合其精确分子量和参考文献[18]质谱数据的比较,推测该化合物为丹酚酸C。化合物1中,正离子模式下给出m/z 139.039 4的[M+H]+准分子离子峰,脱去1分子H2O形成m/z 121.028 7的碎片离子峰,通过数据库比对和参考文献[10],推测该化合物1为原儿茶醛。化合物13中,在正离子模式下产生m/z 341.066 9的[M+H]+准分子离子峰,脱去1分子CO2形成m/z 295.060 7的碎片离子峰,m/z 277.050 9和m/z 249.056 0的碎片离子峰是m/z 295.060 7峰分别脱去1分子H2O和1分子CO2形成的,通过数据库比对和参考文献[17]质谱数据,推测该化合物为丹酚酸G。
4. 讨论
4.1 色谱与质谱条件考察
本实验流动相考察了乙腈-水系统和甲醇-水系统,结果乙腈-水系统中化合物的分离度较好,加入甲酸可以改善峰形,有助于化合物的离子化,提高质谱的响应,最终选择乙腈-0.1%甲酸水系统作为本次研究的流动相。
4.2 化学成分的定性分析
据以往文献中三色片各化学成分的研究报道,收集各药材的主要化学成分的精确分子量,碎片离子峰等信息,建立相应的化学成分数据库。通过数据库比对,对照品保留时间及参考文献中质谱数据鉴定三色片醇提物乙酸乙酯部位的化学成分。本研究共鉴定出42个化合物,其中5个是通过对照品鉴定得出,对无对照品的化合物,通过质谱的裂解特征及参考文献进行结构表征,对同分异构体应结合其在液相色谱中化合物的保留时间及质谱行为,综合对其定性鉴别。
三色片醇提物的乙酸乙酯部位具有较强的抗补体活性,本研究采用UPLC-Q-TOF-MS法对其中的化学成分进行结构表征,结果发现该部位主要含有生物碱类,萜类,黄酮和酚酸类等化学成分。其中以来源于雷公藤药材中极性中等的生物碱类成分含量较多,这与三色片提取物的制备工艺有关,三色片中雷公藤药材采用乙醇加热回流提取的方式,而黄芪和丹参药材采用水提取醇沉淀的方式。此外,先前的研究发现广藿香中的黄酮和萜类化合物对旁路途径的补体激活具有明显的抑制作用,紫花地丁中的生物碱类成分对旁路途径也有抑制作用(AP50=0.22~0.50 g/L), 牡丹皮和毛七公的抗补体活性成分研究中发现酚羟基决定抗补体活性的存在与否,没食子酰基可改善抗补体活性,甲基则对抗补体活性不利[25-27]。通过本次研究对三色片醇提物的乙酸乙酯部位的化学成分进行了初步表征,为阐明三色片的药效物质基础提供参考依据。研究的不足之处在于,仍有部分化学成分尚未定性鉴定,含量较高的单体成分未进行体外抗补体活性的测定,未来将通过中药化学的方法获得含量较高的单体成分,并进行结构鉴定和抗补体活性测定。
-
表 1 5种指示菌平板培养条件及遴选的阳性对照药
指示菌 培养条件 阳性药 B. mycoides(蕈状芽胞杆菌) MHA, 37 ℃ 万古霉素 S. aureus(金黄色葡萄球菌) MHA, 37 ℃ 万古霉素 M. smegmatis(耻垢分支杆菌) MHA, 37 ℃ 卡那霉素 E. coli(大肠杆菌) MHA, 37 ℃ 萘啶酮酸 C. albicans(白色念珠菌) PDA, 30 ℃ 两性霉素 -
[1] YANG C F, QIAN R, XU Y, et al. Marine actinomycetes-derived natural products[J]. Curr Top Med Chem,2019,19(31):2868-2918. [2] FENICAL W, JENSEN P R. Developing a new resource for drug discovery: marine actinomycete bacteria[J]. Nat Chem Biol,2006,2(12):666-673. doi: 10.1038/nchembio841 [3] BLUNT J W, CARROLL A R, COPP B R, et al. Marine natural products[J]. Nat Prod Rep,2018,35(1):8-53. doi: 10.1039/C7NP00052A [4] THOMAS T, MOITINHO-SILVA L, LURGI M, et al. Diversity, structure and convergent evolution of the global sponge microbiome[J]. Nat Commun,2016,7:11870. doi: 10.1038/ncomms11870 [5] MORI T, CAHN J K B, WILSON M C, et al. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated <italic>Entotheonella</italic> sponge symbionts[J]. Proc Natl Acad Sci USA,2018,115(8):1718-1723. doi: 10.1073/pnas.1715496115 [6] TIANERO M D, BALAICH J N, DONIA M S. Localized production of defence chemicals by intracellular symbionts of <italic>Haliclona</italic> sponges[J]. Nat Microbiol,2019,4(7):1149-1159. doi: 10.1038/s41564-019-0415-8 [7] CHOSHI T, UCHIDA Y, KUBOTA Y, et al. Lipase-catalyzed asymmetric synthesis of desprenyl-carquinostatin A and descycloavandulyl-lavanduquinocin[J]. Chem Pharm Bull,2007,55(7):1060-1064. doi: 10.1248/cpb.55.1060 [8] Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-eighth edition[M]. CLSI document M07-A8. Wayne, PA: Clinical and Laboratory Standards Insitute, 2009. [9] FURUKAWA Y, SAWAMOTO A, YAMAOKA M, et al. Effects of carbazole derivatives on neurite outgrowth and hydrogen peroxide-induced cytotoxicity in Neuro2a cells[J]. Molecules,2019,24(7):E1366. doi: 10.3390/molecules24071366 [10] KOBAYASHI M, TOMITA T, SHIN-YA K, et al. An unprecedented cyclization mechanism in the biosynthesis of carbazole alkaloids in <italic>Streptomyces</italic>[J]. Angew Chem Int Ed Engl,2019,58(38):13349-13353. doi: 10.1002/anie.201906864 [11] GUTIÉRREZ M, CAPSON T L, GUZMÁN H M, et al. Antiplasmodial metabolites isolated from the marine octocoral Muricea austera[J]. J Nat Prod,2006,69(10):1379-1383. doi: 10.1021/np060007f [12] 陈明华, 巫晔翔, 董飚, 等. 链霉菌CPCC 202950的化学成分研究[J]. 中国中药杂志, 2015, 40(7):1320-1324. [13] SOLEDADE M, PEDRAS C, MORALES V M, et al. Phomapyrones: Three metabolites from the blackleg fungus[J]. Phytochemistry,1994,36(5):1315-1318. doi: 10.1016/S0031-9422(00)89658-2 [14] 王聪, 王立平, 范杰, 等. 深海链霉菌<italic>Streptomyces malaysiensis</italic> OUCMDZ-2167来源的细胞毒性产物[J]. 有机化学, 2017, 37(3):658-666. [15] MA M, RATEB M E, YANG D, et al. Germicidins H-J from <italic>Streptomyces sp</italic>. CB00361[J]. J Antibiot,2017,70(2):200-203. doi: 10.1038/ja.2016.100 [16] BUTLER M S, ROBERTSON A A B, COOPER M A. Natural product and natural product derived drugs in clinical trials[J]. Nat Prod Rep,2014,31(11):1612-1661. doi: 10.1039/C4NP00064A [17] SCHMIDT A W, REDDY K R, KNÖLKER H J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids[J]. Chem Rev,2012,112(6):3193-3328. doi: 10.1021/cr200447s [18] KNÖLKER H J, REDDY K R. Isolation and synthesis of biologically active carbazole alkaloids[J]. Chem Rev,2002,102(11):4303-4427. doi: 10.1021/cr020059j [19] KATO S, SHINDO K, KATAOKA Y, et al. Studies on free radical scavenging substances from microorganisms. Ⅱ. Neocarazostatins A, B and C, novel free radical scavengers[J]. J Antibiot,1991,44(8):903-907. doi: 10.7164/antibiotics.44.903 [20] SHIN-YA K, KUNIGAMI T, KIM J S, et al. Carquinostatin B, a new neuronal cell-protecting substance produced by <italic>Streptomyces exfoliatus</italic>[J]. Biosci Biotechnol Biochem,1997,61(10):1768-1769. doi: 10.1271/bbb.61.1768 [21] SOBOLEVSKAYA M P, DENISENKO V A, MOISEENKO A S, et al. Bioactive metabolites of the marine actinobacterium <italic>Streptomyces sp</italic>. KMM 7210[J]. Russ Chem Bull,2007,56(4):838-840. doi: 10.1007/s11172-007-0126-9 [22] 何其伟, 刘吉开, 杜子伟, 等. 齿贝栓菌的化学成分[J]. 安徽中医学院学报, 2011, 30(2):73-76. [23] HEIDARI B, MOHAMMADIPANAH F. Isolation and identification of two alkaloid structures with radical scavenging activity from <italic>Actinokineospora sp</italic>. UTMC 968, a new promising source of alkaloid compounds[J]. Mol Biol Rep,2018,45(6):2325-2332. doi: 10.1007/s11033-018-4395-1 [24] PETERSEN F, ZÄHNER H, METZGER J W, et al. Germicidin, an autoregulative germination inhibitor of <italic>Streptomyces viridochromogenes</italic> NRRL B-1551[J]. J Antibiot,1993,46(7):1126-1138. doi: 10.7164/antibiotics.46.1126 -