-
类风湿关节炎(RA)以对称性多关节滑膜炎为主要临床表现,具有异质性、系统性,呈慢性、进行性、侵袭性,如无恰当治疗,则病情逐渐加重而形成永久性骨质破坏并最终出现残疾,甚至累及脏器和神经系统而危及生命。通过早诊断、早治疗,阻止关节炎症病变发展成不可逆的骨破坏至关重要。目前常用的治疗RA药物如非甾体抗炎药、糖皮质激素、改善病情的抗风湿药、免疫抑制剂及生物制剂等,可在较短的时间改善患者的临床症状,但长期使用存在不良反应增多、费用较高、单一靶向作用疗效受限等问题,因此寻找有效、低毒、价廉及适合长期服用的RA药物,成为研究热点。
RA属于中医学“历节风”、“顽痹”、“骨痹”、“鹤膝风”等范畴。《素问•痹论》云:“风寒湿三气杂至,合而为痹”,治疗以祛风散寒除湿,通络止痛为主。青风藤为防己科植物青藤Sinomenium acutum(Thunb.)Rehd. et Wils.和毛青藤Sinomenium acutum(Thunb.)Rehd. et Wils. var. cinereum Rehd. et Wils.的干燥藤茎(《中国药典》2020年版),其性味苦、辛、平,归肝、脾经,能有效祛风除湿,通络止痛。《本草汇言》载“青风藤,散风寒湿痹之药,能舒筋活血,正骨利髓。”《本草纲目》认为有“治风湿流注,历节鹤膝”之功。现代研究显示以青风藤为主要药物的汤剂,可有效延缓疾病发展,改善患者临床症状[1-2];青风藤的有效成分青藤碱也具有较好的抗炎镇痛和抑制自身抗体产生的作用,在治疗RA方面,具有较好的临床疗效和较低的副作用[3]。本文旨在通过对青风藤进行网络药理学分析,以期探索其物质基础及可能的作用机制,为进一步研究青风藤治疗RA提供理论依据。
-
从TCMSP共获得青风藤16个化学成分,以OB>30%,DL>0.18为筛选条件,共筛选出有效活性成分6个(表1)。
表 1 青风藤有效成分
成分代码 化合物名称 OB (%) DL MOL000358 β-谷固醇(beta-sitosterol) 36.91 0.75 MOL000621 拉兹马宁碱(16-epi-Isositsirikine) 49.52 0.59 MOL000627 千金藤啶碱(stepholidine) 33.11 0.54 MOL000625 青藤碱(sinomenine) 46.09 0.53 MOL000623 乌心石环氧内酯(michelenolide) 47.54 0.25 MOL000622 甘露聚糖(magnograndiolide) 63.71 0.19 -
登陆DRAR-CPI服务器并上传青风藤有效活性成分结构的mol2格式文件,筛选Z-score <−1的蛋白靶点的PDB ID导入Uniprot数据库,获取6个有效活性成分的潜在基因靶点合计383个。其中,存在多个有效成分对应同一基因靶点的情况,经去重处理后,共获得青风藤潜在基因靶点176个。
-
通过Geencards数据库得到RA相关靶点4329个,通过筛选设置relevance score≥15,最终获得305个相关靶点,OMIM数据库得到与RA相关靶点13个,筛重后获得疾病相关靶点305个。
-
利用Venn 2.1软件将“青风藤”活性成分对应的176个靶点与RA对应的305个靶点进行交集,获得15个共有靶点(图1)。将15个共有靶点导入Cytoscape 3.7.2软件,构建“青风藤-化合物-靶点-RA”的网络图并进行可视化分析(图1)。该网络包含了23个节点,100条边,其中,三角形代表药物;燕尾形代表疾病;菱形代表活性成分;椭圆形代表靶点;连接化合物与靶点的边表示它们之间有作用关系。依据网络拓扑学性质可知,靶点度值(degree)是拓扑结构中的重要参数,其表示网络中和节点相连的路线的条数,度值高的节点很可能在整个网络中起到桥梁作用,有较多节点的化合物或药物靶点在整个网络中可能起到关键的作用。本研究筛选度值较大的节点进行分析,排名前3位的化合物分别为青藤碱(sinomenine)、拉兹马宁碱(16-epi-isositsirikine)及乌心石环氧内酯(michelenolide),其分别能与8、6及6个靶点蛋白发生作用。从靶点的角度看,排名前4位的是IL-10、B2M、NR3C1及S100A9,分别能与4、4、3及3个化合物发生相互作用,体现了中药多靶点的特性。
-
将Venn图获得的15个药物-疾病共同靶点上传至String在线数据库平台得到PPI网络(图2),同时得到网络中相关节点的度值。在此网络中包含节点15个,边55条,度值均值7.33。根据“度值>均值”筛选出关键靶点7个,包括:IL-10、IL-4、INS、MAPK8、ELANE、MAPK1、MAPK14。度值最高的是IL-10,为14;其次为IL-4,度值为13;INS度值为12。度值大的靶点提示在网络调控中起着关键作用,度值大的靶点很可能是青风藤治疗RA的关键靶点。
-
GO是Gene Ontology的简称,主要包括生物过程(BP)、细胞组成(CC)及分子功能(MF)3个部分。本研究GO功能富集分析显示500个生物过程(BP)、18个细胞组成(CC)、28个分子功能(MF),分别对BP、CC及MF前10个条目进行可视化分析,得到图3,其中纵坐标表示富集条目,横坐标表示富集个数。图4显示共同作用靶点在BP中,主要富集条目为对细菌起源分子的反应、细胞对生物刺激的反应,调节DNA结合转录因子活性、积极调节细胞因子的产生、调节炎症反应,以及对中性粒细胞活化的调节、对脂多糖的反应等;共同作用靶点在CC中主要富集条目为分泌颗粒内腔、细胞质囊泡腔、内体腔、液泡腔等;共同作用靶点在MF中主要富集条目为MAP激酶活性、Toll样受体结合、细胞因子受体结合、蛋白质丝氨酸/苏氨酸激酶活性、磷酸酶结合、细胞因子活性等。
-
KEGG通路富集分析显示77条通路,对前10条通路进行可视化分析,得到图4,其中纵坐标表示富集通路的名称,横坐标表示富集基因个数。前10条通路显示,靶点主要富集于FcεRI信号通路、百日咳、利什曼病、结核、IL-17信号通路、恰加斯病(美国锥虫病)、C型凝集素受体信号通路、T细胞受体信号通路、弓形虫病、FoxO信号通路等,多为感染、炎症和免疫相关通路。其中涉及到的靶点基因,出现频次较高的是MAPK1、MAPK14、MAPK8、IL-10及IL-4。
Mechanism of Sinomenii caulis in the treatment of rheumatoid arthritis based on network pharmacology
-
摘要:
目的 应用网络药理学研究方法,探讨青风藤治疗类风湿关节炎(RA)的可能作用机制。 方法 使用中药系统药理学数据库与分析平台(TCMSP)筛选青风藤的化学成分,并依据TCMSP数据库的口服生物利用度(OB)和类药性指数(DL)筛选出主要有效活性成分。借助DRAR-CPI分子对接服务器得到有效活性成分的潜在作用靶点。通过Genecards、OMIM数据库筛选出RA的靶点,利用Venn软件获取药物与疾病的共同靶点,运用Cytoscape软件构建“化合物-靶点-疾病”网络图。使用String数据库绘制靶蛋白相互作用(PPI)网络,利用clusterProfiler程序包对有效作用靶点进行GO功能、KEGG通路富集分析。 结果 该研究共筛选出青风藤有效活性成分6个,作用靶点176个;RA靶点305个;青风藤治疗RA的靶点15个。GO功能富集分析显示500个生物过程(BP)、18个细胞组成(CC)、28个分子功能(MF)。KEGG通路富集分析显示77条通路。 结论 该研究初步揭示了青风藤中以青藤碱为主的6种有效活性成分发挥了抗RA的作用,治疗的关键靶点与IL-10、IL-4、INS、MAPK8、ELANE、MAPK1、MAPK14有关,涉及的生物学过程及信号通路主要与感染、炎症及免疫相关,为进一步的分子生物学实验研究奠定了基础。 Abstract:Objective To explore the molecular targets and associated potential pathways of Sinomenii caulis in the treatment of rheumatoid arthritis (RA) based on network pharmacology. Methods The constituents of Sinomenii caulis were searched by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The potential active ingredients were screened based on oral bioavailability (OB) and drug like index (DL) in TCMSP database. The potential targets of active ingrediens were explored based on DRAR-CPI docking server. RA related gene targets were retrieved through GeneCards and OMIM database. Venn online software was used to obtain the common target of drugs and diseases. The "herbs-compound-target-disease" network diagram was constructed by using Cytoscape software. String database was used to draw the protein interaction (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the intersection network were conducted by Bioconductor Database. Results 6 active ingredients and 176 targets were identified. 305 target genes directly related to RA were obtained from the GeneCards and OMIM databases. 15 genes were obtained from the intersection of component-target and disease-target. The GO function analysis found 500 items on biological process (BP), 18 items on cellular component (CC), and 28 items on molecular function (MF). KEGG pathway enrichment analysis revealed 77 pathways. Conclusion This study identified six active ingredients from Sinomenii caulis and revealed the key targets of the anti-RA treatment with Sinomenii caulis being IL10、IL4、INS、MAPK8、ELANE、MAPK1 and MAPK14. The important biological processes and signaling pathways including infection, inflammation and immunity were explored. It has laid the foundation for further molecular biology experiments. -
Key words:
- Sinomenii caulis /
- rheumatoid arthritis /
- network pharmacology /
- signaling pathways
-
表 1 青风藤有效成分
成分代码 化合物名称 OB (%) DL MOL000358 β-谷固醇(beta-sitosterol) 36.91 0.75 MOL000621 拉兹马宁碱(16-epi-Isositsirikine) 49.52 0.59 MOL000627 千金藤啶碱(stepholidine) 33.11 0.54 MOL000625 青藤碱(sinomenine) 46.09 0.53 MOL000623 乌心石环氧内酯(michelenolide) 47.54 0.25 MOL000622 甘露聚糖(magnograndiolide) 63.71 0.19 -
[1] 王国芬. 青风藤汤对类风湿关节炎患者Tfh、IL-21及抗CCP抗体的影响[J]. 现代实用医学, 2019(8):1005-1007. doi: 10.3969/j.issn.1671-0800.2019.08.006 [2] 许超, 张方, 吴倩, 等. 青风藤汤联合甲氨蝶呤对类风湿关节炎患者滤泡辅助性T细胞及白介素-21的影响[J]. 中国中西医结合杂志, 2017(7):781-784. doi: 10.7661/j.cjim.20170515.092 [3] 张永立, 欧阳桂林, 肖涟波. 青藤碱治疗类风湿关节炎作用机制研究进展[J]. 中西医结合学报, 2009, 7(8):775-779. [4] TAO W Y, XU X, WANG X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease[J]. J Ethnopharmacol,2013,145(1):1-10. doi: 10.1016/j.jep.2012.09.051 [5] XU X, ZHANG W X, HUANG C, et al. A novel chemometric method for the prediction of human oral bioavailability[J]. Int J Mol Sci,2012,13(6):6964-6982. doi: 10.3390/ijms13066964 [6] 胡亚洁, 赵晓锦, 宋咏梅, 等. 基于网络药理学的中药复方研究探讨[J]. 时珍国医国药, 2018, 29(6):1400-1402. [7] 张雨, 李恒, 李克宁, 等. 复方中药网络药理学的研究进展[J]. 中成药, 2018, 40(7):1584-1588. doi: 10.3969/j.issn.1001-1528.2018.07.029 [8] LING C Q. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2)[J]. J Integr Med,2020,18(2):87-88. doi: 10.1016/j.joim.2020.02.004 [9] ZHANG D H, WU K L, ZHANG X, et al. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus[J]. J Integr Med,2020,18(2):152-158. doi: 10.1016/j.joim.2020.02.005 [10] 任建敏. 食物中植物甾醇生理活性及药理作用研究进展[J]. 食品工业科技, 2015, 36(22):389-393. [11] KRIPA K G, CHAMUNDEESWARI D, THANKA J, et al. Modulation of inflammatory markers by the ethanolic extract of Leucas aspera in adjuvant arthritis[J]. J Ethnopharmacol,2011,134(3):1024-1027. doi: 10.1016/j.jep.2011.01.010 [12] 蔡强, 向莹, 岳涛. 基于网路药理学方法预测青风藤药理机制[J]. 现代中医药, 2019, 39(2):108-112. [13] 周淑媛, 施铮, 刘峥, 等. 左旋千金藤啶碱增加离体大鼠心肌收缩力的作用[J]. 中药药理与临床, 2009, 25(2):23-26. [14] NISHIKAWA M, MYOUI A, TOMITA T, et al. Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653[J]. Arthritis Rheum,2003,48(9):2670-2681. doi: 10.1002/art.11227 [15] XU M M, LIU S F, WAN R J, et al. Combined treatment with sinomenine and acupuncture on collagen-induced arthritis through the NF-κB and MAPK signaling pathway[J]. Oncol Lett,2018,15(6):8770-8776.