-
STAT3是一种重要的转录因子,参与众多细胞因子和生长因子受体的信号转导,在细胞生长和细胞凋亡等多种细胞过程中发挥着关键作用[1-2]。STAT3的活化可以通过刺激白介素-6受体(IL-6R)、Janus酪氨酸激酶、BCR-ABL和SRC家族激酶等来启动[3]。STAT3经磷酸化活化后形成同源和异源二聚体,并易位至细胞核,发挥转录激活因子的作用[4-6]。目前,越来越多的证据显示,多种恶性肿瘤存在STAT3的过度激活,包括前列腺癌、肺癌、乳腺癌、皮肤癌和宫颈癌等,抑制STAT3的磷酸化成为一种很有前景的治疗策略。此外,STAT3还与肝损伤、纤维化、风湿性关节炎、心肌缺血等疾病有关[7]。尽管一些STAT3抑制剂正在进行临床试验,但迄今为止尚未批准STAT3抑制剂用于癌症的治疗。因此,仍然迫切需要发现潜在的STAT3抑制剂[8]。
SPR是一种光学生物传感技术,该技术利用光学测量的折射率变化,分析样品与固定在SPR传感器上的分子的结合情况。因其无需标记样品,具有高灵敏度,能实时检测生物分子间的相互作用而被广泛运用于医疗检测、药物筛选、环境监测和食品检测等领域[9]。
本课题采用SPR技术从中药单体中筛选能与STAT3特异性结合的小分子化合物,通过蛋白免疫印迹技术和双荧光素酶报告基因考察小分子对STAT3的抑制作用,采用分子对接技术拟合化合物与STAT3的结合模式,明确其可能的作用位点,从而为STAT3抑制剂的发现提供理论指导和实践经验。
Screening small molecular inhibitors of STAT3 based on surface plasmon resonance technology
-
摘要:
目的 基于表面等离子体共振(SPR)技术,筛选能与信号转导和转录激活因子3(STAT3)特异性结合并抑制其活性的小分子化合物。 方法 使用基于SPR技术的Biacore T200生物分子互作分析系统,在最优pH富集条件下将纯化蛋白STAT3偶联到SPR系统的CM5芯片上,从50个中药单体中筛选出能够与STAT3结合且响应值较高的化合物,并对其结合特异性进行确认,然后运用生物学相关实验确证筛选所得化合物对STAT3的抑制作用,最后采用分子对接技术拟合化合物与STAT3的结合模式,明确其可能的作用位点。 结果 初步筛选获得10多个高响应的候选分子,通过动力学测定发现其中仅有1个分子芹黄素显示特异性结合。Western-blot实验结果表明,芹黄素能够剂量依赖地抑制STAT3的磷酸化;双荧光素酶报告基因结果显示,芹黄素能够剂量依赖地抑制IL-6诱导的STAT3的转录活性。分子对接结果表明,芹黄素与STAT3蛋白的SH2结构域结合,与关键残基Glu638、Gln644、Gly656、Lys658形成氢键相互作用,与Tyr657残基形成π-π相互作用。 结论 基于SPR技术筛选,发现芹黄素是STAT3的抑制剂。 -
关键词:
- 表面等离子体共振技术 /
- 信号转导和转录激活因子3 /
- 小分子抑制剂 /
- 芹黄素
Abstract:Objective To find small molecules binding specifically to signal transducer and activator of transcription3 (STAT3) based on surface plasmon resonance (SPR) technology and confirm their inhibitory activities to STAT3. Methods The biomolecular interaction analysis T200 system based on SPR technology was used to couple the purified protein STAT3 to CM5 chip under the optimal pH conditions. The compounds with high binding response value were screened out from 50 candidate compounds derived from traditional Chinese medicines and the binding specificity was then confirmed. Biological experiments were performed to confirm the inhibitory effects of the screened compounds on STAT3. The binding pattern of STAT3 and the compound was fitted by molecular docking technique. Results More than 10 candidate molecules exhibited binding activities to STAT3 and kinetics assays revealed that only one candidate molecule, apigenin, showed specific binding. Western-blot analysis exhibited that apigenin inhibited the phosphorylation of STAT3 dose-dependently. Luciferase reporter gene assays demonstrated that apigenin also inhibited IL-6-induced STAT3 transcriptional activity in a dose-dependent manner. Molecular docking results showed that apigenin binds to the SH2 domain of STAT3, and interacts with key residues Glu638, Gln644, Gly656 and Lys658 by hydrogen bonds and with Tyr657 through π-π interactions. Conclusion Apigenin was a direct inhibitor of STAT3. -
Key words:
- surface plasmon resonance /
- STAT3 /
- small molecular inhibitors /
- apigenin
-
-
[1] AKIRA S, NISHIO Y, INOUE M, et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway[J]. Cell,1994,77(1):63-71. doi: 10.1016/0092-8674(94)90235-6 [2] YUAN Z L, GUAN Y J, WANG L, et al. Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells[J]. Mol Cell Biol,2004,24(21):9390-9400. doi: 10.1128/MCB.24.21.9390-9400.2004 [3] SRIVASTAVA J, DIGIOVANNI J. Non-canonical Stat3 signaling in cancer[J]. Mol Carcinog,2016,55(12):1889-1898. doi: 10.1002/mc.22438 [4] TKACH M, ROSEMBLIT C, RIVAS M A, et al. p42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progestin-induced full activation of Stat3 and breast cancer growth[J]. Endocr Relat Cancer,2013,20(2):197-212. doi: 10.1530/ERC-12-0194 [5] SILVA C M. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis[J]. Oncogene,2004,23(48):8017-8023. doi: 10.1038/sj.onc.1208159 [6] LIM C P, CAO X M. Structure, function, and regulation of STAT proteins[J]. Mol Biosyst,2006,2(11):536-550. doi: 10.1039/b606246f [7] 岳晓虹, 叶霁青, 孙丽萍. 信号转导与转录激活因子的生物学功能及相关疾病[J]. 中国药科大学学报, 2016, 47(4):404-411. doi: 10.11665/j.issn.1000-5048.20160404 [8] XU L, QIU S, YANG L, et al. Aminocyanopyridines as anti-lung cancer agents by inhibiting the STAT3 pathway[J]. Mol Carcinog,2019,58(8):1512-1525. doi: 10.1002/mc.23038 [9] PILIARIK M, VAISOCHEROVÁ H, HOMOLA J. Surface plasmon resonance biosensing[J]. Methods Mol Biol Clifton N J,2009,503:65-88. [10] 陈越, 季鸣, 陈晓光. STAT3与肿瘤关系的研究进展[J]. 药学学报, 2017, 52(9):1351-1358. [11] ZOU S, TONG Q, LIU B, et al. Targeting STAT3 in cancer immunotherapy[J]. Mol Cancer,2020,19(1):145. doi: 10.1186/s12943-020-01258-7 [12] CHAI E Z, SHANMUGAM M K, ARFUSO F, et al. Targeting transcription factor STAT3 for cancer prevention and therapy[J]. Pharmacol Ther,2016,162:86-97. doi: 10.1016/j.pharmthera.2015.10.004 [13] SHUKLA S, GUPTA S. Apigenin: a promising molecule for cancer prevention[J]. Pharm Res,2010,27(6):962-978. doi: 10.1007/s11095-010-0089-7 [14] IMRAN M, ASLAM GONDAL T, ATIF M, et al. Apigenin as an anticancer agent[J]. Phytother Res,2020,34(8):1812-1828. doi: 10.1002/ptr.6647