留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

复方羊蛇颗粒处方药材提取工艺的优化研究

郁建超 马超 王萌萌 李丹 刘荣美 刘继勇

王吉荣, 杨道秋, 孙治国, 韩涵, 邓莉. 盐酸吉西他滨联合铁死亡诱导剂对PANC-1细胞的增殖抑制作用[J]. 药学实践与服务, 2023, 41(4): 234-239. doi: 10.12206/j.issn.2097-2024.202212051
引用本文: 郁建超, 马超, 王萌萌, 李丹, 刘荣美, 刘继勇. 复方羊蛇颗粒处方药材提取工艺的优化研究[J]. 药学实践与服务, 2023, 41(4): 240-244. doi: 10.12206/j.issn.2097-2024.202207103
WANG Jirong, YANG Daoqiu, SUN Zhiguo, HAN Han, DENG Li. Inhibitory effects of gemcitabine hydrochloride combined with ferroptosis inducers on the proliferation of PANC-1 cells[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(4): 234-239. doi: 10.12206/j.issn.2097-2024.202212051
Citation: YU Jianchao, MA Chao, WANG Mengmeng, LI Dan, LIU Rongmei, LIU Jiyong. Optimization of extraction process of prescription medicinal materials of compound Yangshe granules[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(4): 240-244. doi: 10.12206/j.issn.2097-2024.202207103

复方羊蛇颗粒处方药材提取工艺的优化研究

doi: 10.12206/j.issn.2097-2024.202207103
基金项目: 上海市科委生物医药科技支撑项目(20S21900300);上海市卫生健康委员会中医药科研项目(2022QN081)
详细信息
    作者简介:

    郁建超,工程师,在职硕士研究生,Email:15628829629@163.com

    通讯作者: 刘继勇,博士,主任药师、教授,研究方向:基于临床需求的药物新型递药系统及临床药学,Email:liujiyong@fudan.edu.cn

Optimization of extraction process of prescription medicinal materials of compound Yangshe granules

  • 摘要:   目的  优化医院制剂复方羊蛇颗粒处方药材的提取工艺。  方法  建立处方中有效成分去乙酰车叶草酸甲酯、阿魏酸的高效液相定量方法,并以去乙酰车叶草酸甲酯、阿魏酸的含量以及提取物干浸膏得率为指标,采用星点设计—效应面法对复方羊蛇颗粒处方的浸膏提取工艺进行优化。  结果  建立的复方羊蛇颗粒中有效成分的高效液相定量方法符合方法学验证要求。通过星点设计—效应面法优化的最佳提取工艺为:提取溶媒的用量为处方药材量的12倍,醇沉浓度为73%,提取时间为每次60分钟。  结论  本研究成功建立了复方羊蛇颗粒有效成分的高效液相色谱定量方法,经优化后的提取工艺操作简单易行、重复性良好。
  • 多囊卵巢综合征(polycystic ovary syndrome,PCOS)是育龄期女性最常见的一种生殖内分泌疾病,其特征以生化或临床高雄激素血症、无排卵和卵巢多囊样改变等为主要表现[1-2]。流行病学显示PCOS在全世界范围内的总体发病率约为6%~20%[3],而由PCOS引发的排卵障碍所致的不孕症占40%[4]。PCOS不仅影响女性的正常生殖功能,还会导致女性发生代谢系统方面的障碍,如高胰岛素血症、胰岛素抵抗,增加女性继发糖尿病、心血管疾病及子宫内膜癌的风险,对女性健康造成严重不良影响[2]。肥胖是PCOS发生的重要危险因素之一[5]。研究数据表明,28.3%的超重或肥胖的女性患有PCOS[6],多达42%的PCOS患者超重或肥胖[7]。肥胖对PCOS的发展和进展产生显著影响,研究发现,脂肪细胞主要通过分泌脂肪因子,如IL-1、IL-6、瘦素、脂联素等,作用于相应的靶器官、靶组织、靶细胞,如卵巢、肾上腺等,刺激机体产生较多的雄激素,而雄激素又可通过抑制肾上腺素受体等导致体内脂肪分解减少,脂肪大量堆积在体内,导致体内高雄激素水平与肥胖之间形成恶性循环,严重影响PCOS患者的健康状况[3]。与普通女性相比,PCOS患者具有更高的肥胖倾向,且更容易出现腹部脂肪堆积[8];而这种由于腹部脂肪堆积造成的中心性肥胖反过来又可加重PCOS患者的临床或生化表现,导致胰岛素抵抗、高雄激素血症、生殖功能异常等[9]。临床试验结果显示,若患者体质量减轻初始体质量的5%,其体内激素水平、血糖水平得以改善,同时,月经周期和排卵情况趋于正常化,这表明体质量减轻可增加患者排卵和妊娠的可能性[10]

    青蒿素(artemisinin,ART)是一种天然倍半萜内酯化合物,最初由2015年诺贝尔生理学或医学奖获得者屠呦呦从青蒿植物中提取出来并广泛用于抗疟疾治疗[11];青蒿素还用于抗癌、抗炎药物等[12]。近年研究发现,青蒿素及其衍生物还具有预防肥胖的功效:在啮齿动物模型中,青蒿素及其衍生物通过调节p38MAPK/ATF2轴和Akt/mTOR途径等在脂肪生成过程中诱导脂肪细胞褐变,从而预防肥胖并改善肥胖相关的代谢紊乱[13]。Lee等[14]和Jang[15]体外实验数据表明,青蒿素及其衍生物可通过PPARγ途径抑制脂肪生成和脂肪因子的表达。本研究通过网络药理学方法和分子对接方法分析预测青蒿素可用于治疗PCOS的潜在靶点,旨在为深入研究其治疗的作用机制提供参考。

    通过Pubchem数据库[16]https://pubchem.ncbi.nlm.nih.gov/)获得天然产物青蒿素的SMILES号,并将其输入Swiss TargetPrediction数据库[17]http://www.swisstargetprediction.ch/)进行靶点预测,导出分析结果并保存;结合PharmMapper数据库[18]http://www.lilab-ecust.cn/pharmmapper/)预测的靶点,二者共同作为青蒿素的药物靶点,并将靶点导入Uniprot数据库[19](https://www.uniprot.org/)进行靶点蛋白与基因名称转换。以“polycystic ovary syndrome”作为关键词检索,通过DisGeNET数据库[20]https://www.disgenet.org/)、GeneCard数据库[21]https://www.genecards.org/)进行疾病靶点预测。将搜集的青蒿素靶点和PCOS靶点分别导入Venny在线作图软件(https://bioinfogp.cnb.csic.es/tools/venny/)绘制韦恩图,从而得到二者的共同靶点。

    将共同靶点导入STRING数据库[22]https://cn.string-db.org/),物种选择“homo sapiens”,最低相互作用分数设置为“0.9”,隐藏游离点,其他保持默认设置,得到蛋白相互作用网络图(protein-protein interaction,PPI),将PPI网络图导入Cytoscape 3.9.1软件[23],进行核心靶点筛选。

    将共同靶点导入DAVID数据库[24]https://david.ncifcrf.gov/),分别进行基因本体(gene ontology,GO)功能、京都基因与基因组百科全书(kyotoencyclopodia of genes and genomes,KEGG)通路分析,其中GO功能富集内容从分子功能(molecular function,MF)、生物学过程(biological process,BP)、细胞组分(cellular component,CC)三部分进行逐一分析,并利用微生信在线作图软件(http://www.bioinformatics.com.cn/)将分析结果进行可视化。

    将所获得的青蒿素、PCOS作用靶点及信号通路分别导入Cytoscape软件构建药物-疾病-靶点-通路网络图。

    从Pubchem数据库中下载青蒿素的2D结构,在RCSB PDB数据库[25]https://www.rcsb.org/)中下载核心靶蛋白结构。利用Chem3D软件对青蒿素的2D结构进行转化,用Pymol软件对核心靶蛋白结构进行初步处理,再用Auto Dock Tools软件做进一步加氢等处理,并将处理的核心靶蛋白保存为“pdbqt”格式进行分子对接,最后利用Pymol软件对分子对接结果进行可视化处理[26-27]

    通过数据库检索共得到青蒿素潜在作用靶点229个,PCOS疾病靶点1292个。利用在线作图软件将青蒿素作用靶点与PCOS疾病靶点进行韦恩图分析,得到二者的交集靶点90个,如图1所示。

    图  1  青蒿素与PCOS靶点韦恩图

    将交集靶点导入String数据库,绘制PPI网络关系图,如图2所示,其中包括网络节点90个,边235条。将共同靶点导入Cytoscape 软件进行核心靶蛋白筛选。如图3所示。综合节点度值及本研究相关度排名靠前的分别为AKT1、ESR1、MMP9、PPARγ、MMP2(见表1)。

    图  2  蛋白互作网络图
    注:图中节点代表蛋白质,其中红色节点表示查询蛋白质,其他颜色节点表示与查询蛋白只有相互作用的其他蛋白质,空白节点表示未知3D结构的蛋白质,填充节点表示已知3D结构,连线代表蛋白与蛋白之间的相互作用关系
    图  3  核心靶点筛选
    注:图中节点越大,颜色越红,代表节点之间的关联程度越高
    表  1  青蒿素作用于PCOS的核心靶点
    基因名称节点度值排名
    ALB661
    AKT1602
    CASP3533
    SRC514
    EGFR505
    HSP90AA1496
    MMP9487
    ESR1488
    HRAS479
    PPARγ4310
    ERBB24111
    MMP23712
    下载: 导出CSV 
    | 显示表格

    将得到的90个交集靶点导入DAVID数据库进行GO富集分析,富集结果分别根据基因富集程度进行排序,其中BP前10个条目主要涉及细胞增殖调控、蛋白质磷酸化和RNA聚合酶Ⅱ启动子转录的正调控等生物学过程,MF前10个条目主要与蛋白酪氨酸激酶活性、蛋白激酶活性、蛋白结合和酶结合等分子功能有关,CC前10个条目主要在细胞膜、胞质和胞核等部位富集,如图4所示。KEGG富集分析共筛选到162条信号通路,根据基因富集程度排序,前20个条目主要涉及PI3K/Akt、MAPK、Ras、内分泌抵抗等信号通路,如图5所示。

    图  4  GO富集分析
    图  5  KEGG信号通路富集分析

    将相关靶点及通路文件导入Cytoscape 3.9.1软件,得到药物、疾病、靶点和通路之间的关系图(见图6)。

    图  6  青蒿素-PCOS-靶点-通路网络图
    注:三角代表PCOS,菱形代表青蒿素,箭头形状代表通路,六边形代表共同靶点

    分子对接结果显示,青蒿素与核心靶蛋白AKT1、MMP9、ESR1、PPARγ、MMP2之间均存在结合位点。青蒿素与核心靶蛋白的最低结合能分数见表2,结合能越低表示结合活性越高,化合物越容易与该靶点结合。其中青蒿素与核心靶蛋白之间的氢键连接可视化情况如图7所示。

    表  2  青蒿素与核心靶点分子对接结果
    化合物 核心靶点 最低结合能(kJ/mol) 结合位点
    青蒿素 MMP9 −8.2 ARG-143
    AKT1 −7.9 HIS-152
    ESR1 −7.9 THR-460
    PPARγ −7.7 PRO-426、GLN-430、
    LEU-431、PHE-432
    MMP2 −6.4 HIS-190
    下载: 导出CSV 
    | 显示表格
    图  7  青蒿素与核心靶点分子对接可视化(结合能≤8.2 kJ/mol)
    注:图中绿色结构代表配体青蒿素分子,蓝色结构代表受体蛋白,黄色虚线代表氢键

    PCOS主要通过卵巢病变、机体内分泌紊乱等方式影响女性的生育能力[28]。目前关于PCOS的发病机制和病因尚未具体阐明,多认为是遗传和环境因素相互作用的结果;由于病因机制不明,临床治疗尚无统一方案,多采用对症治疗,如基础生活方式调整,通过控制饮食、增加体育运动以降低体质量和缩小腰围,增加机体胰岛素敏感性,降低胰岛素及雄激素水平,同时辅以相应的药物治疗,以减轻症状。

    本研究基于临床发现,PCOS患者多伴有肥胖表现,遂以肥胖与PCOS之间的潜在联系为出发点,同时基于课题组现有天然活性物质进行药物筛选,经文献调研发现青蒿素有抗肥胖效果,继而通过网络药理学方法分析预测青蒿素可能用于治疗PCOS的潜在作用靶点,并探讨其可能用于临床治疗PCOS的可行性。

    本研究根据PPI网络拓扑属性分析筛选出核心靶点AKT1、MMP9、ESR1、PPARγ、MMP2等,推测这些可能是青蒿素用于治疗PCOS的潜在作用靶点。有研究表明[29],AKT1在颗粒细胞增殖中起关键作用,而其表达量的高低主要与机体雄激素水平异常有关,这会导致PCOS患者卵巢颗粒细胞正常功能受损。此外,AKT1还具有组织特异性,Song等[30]通过小鼠实验发现脂肪组织中AKT1的选择性抑制可以刺激白色脂肪组织发生褐变,从而可增加机体能量消耗发挥抗肥胖的效果。基质金属蛋白酶(matrix metalloproteinase,MMPs)是一种锌依赖性酶,可由卵巢产生,在卵泡发育和PCOS的发病机制中起重要作用[31];研究发现PCOS女性患者MMPs活性增加,其血液、卵泡液和颗粒细胞中MMP9、MMP2水平升高,高水平的MMPs会通过改变细胞外基质重塑,引起异常卵泡闭锁和卵巢基质组织增加,从而对患者的排卵和生育能力产生不良影响[32]。Barbara等[33]在对正常女性和肥胖女性血清样本中的MMP浓度对比发现,体质量增加可影响女性血清中的MMP浓度。ESR是维持卵巢颗粒细胞分化、卵泡和卵母细胞生长发育以及排卵功能的关键受体[34];ESR1是一种核激素受体,作为转录因子的激活剂发挥作用[35];Schomberg等[36]在ESR基因敲除的小鼠模型中发现ESR基因缺失会导致卵泡发育受阻,以致卵泡闭锁及无排卵现象发生。Artimani等[37]在评估PCOS患者颗粒细胞中ESR基因表达时发现,ESR mRNA的表达显著低于排卵功能正常女性,认为ESR基因的显著减少可作为颗粒细胞成熟缺陷或卵泡发育停滞的指标。ESR1也是一种与线粒体功能相关的基因,研究发现其在肥胖女性脂肪组织中有减少,Zhou等[38]在人类和啮齿动物实验中证实,脂肪组织中ESR1的表达与脂肪量呈负相关,同时ESR-α作用的降低还会损害线粒体功能,促进肥胖增加,破坏机体代谢稳态。PPARγ是一种调节脂肪细胞发育和葡萄糖稳态的核受体,主要在脂肪组织中表达[39];此外在发育阶段的卵巢颗粒细胞中表达,并可受黄体生成素(luteinizing hormone,LH)水平的影响来调节机体雌激素分泌和卵巢功能[40]。此外,Lee等[41]在PCOS患者颗粒细胞中发现PPARγ mRNA表达水平下调。胡卫红等[42]研究发现PPARγ 在PCOS患者的卵巢颗粒细胞的表达异常可能与PCOS的高雄激素血症有关。

    GO生物学过程富集分析表明,青蒿素治疗PCOS的生物学功能可能与细胞增殖调控、蛋白质磷酸化和RNA聚合酶Ⅱ启动子转录的正调控等生物过程有关。KEGG通路富集分析表明,青蒿素可能通过作用于PI3K/Akt、MAPK、Ras、癌症等信号通路发挥治疗作用。有研究表明,PI3K/Akt信号通路参与调节细胞增殖分化和迁移,在卵泡发育过程中对卵巢颗粒细胞的生长和凋亡起着关键作用[43],在PCOS患者颗粒细胞中与氧化应激相关的凋亡多伴随PI3K/Akt信号下调[44]。此外,研究表明PI3K/Akt信号通路还可以调节脂肪细胞的脂解与分化,从而参与机体脂质代谢[45]。MAPK信号通路参与调节多种细胞过程,如增殖、分化、转录调控等,且该通路与卵巢颗粒细胞类固醇激素的合成有关[46]。研究发现,在PCOS女性中,异常的MAPK信号传导可导致代谢信号缺陷和卵巢雄激素分泌异常增多[47]

    为进一步探索青蒿素在PCOS治疗中的潜在分子机制,本研究将天然产物青蒿素和5个与PCOS密切相关的核心靶蛋白进行分子对接验证,寻找二者之间存在的最佳结合位点以及评估它们之间的结合能力。验证结果显示,青蒿素与核心靶蛋白之间能够较好结合。

    综上所述,本研究采用网络药理学方法分析天然物青蒿素用于治疗PCOS的潜在作用靶点,其机制可能主要涉及PI3K/Akt、MAPK、内分泌抵抗等信号通路。这些信息为后续青蒿素用于治疗PCOS的实验验证提供了重要理论依据。

  • 图  1  去乙酰车叶草酸甲酯和阿魏酸专属性考察

    A.混合对照品溶液;B.供试品溶液;C. 阴性对照溶液;1.去乙酰车叶草酸甲酯;2.阿魏酸

    图  2  溶媒用量、提取次数和醇沉浓度的交互作用对复方羊蛇颗粒提取的影响

    A、C、E. 三维效应面;B、D、F. 二维等高线

    表  1  复方羊蛇颗粒处方药材提取工艺优化星点设计因素水平表

    水平溶媒用量(x1提取时间(x2醇沉浓度(x3
    −1.6826.6439.5553.18
    −186060
    0109070
    11212080
    1.68213.36140.4586.82
    下载: 导出CSV

    表  2  复方羊蛇颗粒提取工艺优化的星点设计表及结果

    试验号x1x2x3DME含量(μg/g)FC含量(μg/g)浸膏得率(%)OD
    11090700.030.0125.240.58
    28120600.040.0133.220.33
    31090700.030.0124.970.59
    41090700.030.0126.370.50
    51039.55700.030.0124.340.50
    613.3690700.030.0129.250.40
    7109053.180.030.0131.070.31
    812120600.040.0134.120.00
    91090700.030.0126.010.57
    108120800.030.0121.120.25
    111090700.030.0127.790.55
    1212120800.030.0124.120.49
    13860800.030.0121.980.25
    14860600.030.0126.520.00
    151090700.030.0126.270.56
    1610140.45700.030.0128.410.49
    171260600.030.0129.710.49
    181260800.030.0123.600.69
    19109086.820.030.0118.640.00
    206.6490700.030.0124.590.31
    下载: 导出CSV

    表  3  缺适性检验及模型统计结果

    来源平方和自由度均方FP
    线性项0.72110.06664.28>0.0001
    2因子交互项0.5680.07068.40>0.0001
    二项式项0.2150.04240.61>0.0005
    三项式项1.984×10−411.984×10−40.190.6781
    下载: 导出CSV

    表  4  二项式模型的回归分析及方程拟合

    参数自由度方程系数FP
    模型90.0683.170.0433
    x110.0733.430.0939
    x210.0100.480.5046
    x318.57×10−30.400.5400
    x1 x210.136.030.0340
    x1 x310.0351.650.2277
    x2 x311.602×10−47.52×10−30.9326
    x1210.0783.680.0840
    x2218.533×10−30.400.5409
    x3210.3014.120.0037
    下载: 导出CSV

    表  5  复方羊蛇颗粒提取工艺验证结果

    试验号DME含量
    (μg/g)
    FC含量
    (μg/g)
    浸膏得率
    (%)
    实测
    OD值
    预测值偏差
    (%)
    10.030.0118.540.680.7035.47
    20.030.0118.370.77
    30.030.0118.550.78
    RSD (%)1.553.360.556.42
    下载: 导出CSV
  • [1] 王骁, 范焕芳, 李德辉, 等. 白花蛇舌草的抗癌作用研究进展[J]. 中国药房, 2019, 30(10):1428-1431.
    [2] 王晶, 卢苏. 加味蜀羊泉散治疗宫颈上皮内瘤变的临床研究[J]. 湖北中医杂志, 2010, 32(10):5-6. doi:  10.3969/j.issn.1000-0704.2010.10.002
    [3] 李慧, 包永睿, 王帅, 等. 中药茜草抗氧化、抗炎、抗肿瘤不同药用部位精准研究[J]. 世界科学技术-中医药现代化, 2019, 21(3):401-407.
    [4] 郝钦, 杨永雁, 韩雅玲, 等. 漏芦逆转胃癌相关成纤维细胞促癌作用的研究[J]. 中药药理与临床, 2017, 33(1):119-123. doi:  10.13412/j.cnki.zyyl.2017.01.032
    [5] 董培良, 李慧, 韩华. 当归及其药对的研究进展[J]. 中医药信息, 2019, 36(2):127-130. doi:  10.19656/j.cnki.1002-2406.190063
    [6] 陈嘉屿, 胡林海, 吴红梅, 等. 党参多糖类对荷瘤小鼠免疫应答及抑瘤作用研究[J]. 中华肿瘤防治杂志, 2015, 22(17):1357-1362. doi:  10.16073/j.cnki.cjcpt.2015.17.007
    [7] 徐伟玲, 董鑫, 冯保荣, 等. 参苓白术散在胃癌辅助治疗中的应用[J]. 中医肿瘤学杂志, 2019, 1(2):46-48. doi:  10.19811/j.cnki.issn2096-6628.2019.02.011
    [8] 邵雪庆, 唐晓萌, 杨盟, 等. 愈肠颗粒的提取工艺研究[J]. 药学实践杂志, 2018, 36(1):46-49.
    [9] MEDLEJ M K, CHERRI B, NASSER G, et al. Optimization of polysaccharides extraction from a wild species of Ornithogalum combining ultrasound and maceration and their anti-oxidant properties[J]. Int J Biol Macromol,2020,161:958-968. doi:  10.1016/j.ijbiomac.2020.06.021
    [10] 闫梦真, 王瑞生, 王金淼, 等. 星点设计-响应面法优选菊苣叶干燥方法和炮制工艺[J]. 中草药, 2021, 52(7):1957-1964. doi:  10.7501/j.issn.0253-2670.2021.07.012
    [11] 崔旭辉, 尚佳, 李喜香, 等. 总评归一法结合响应面法优化补肾强筋丸提取工艺[J]. 中国现代中药, 2022, 24(5):868-875.
    [12] 黄涵, 王宇卿. 瓜蒌薤白半夏胶囊提取工艺的优化[J]. 中成药, 2019, 41(2):420-423. doi:  10.3969/j.issn.1001-1528.2019.02.034
  • [1] 曹奇, 张嘉宝, 王培.  基于无监督自动降维分析与手动圈门联用的骨骼肌髓系细胞多色流式分析方法 . 药学实践与服务, 2025, 43(3): 118-122. doi: 10.12206/j.issn.2097-2024.202404077
    [2] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [3] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [4] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2025, 43(4): 185-189. doi: 10.12206/j.issn.2097-2024.202401072
    [5] 肖农, 陆诗依, 唐文雅, 居敏俐, 徐刚锋, 杨明华.  中成药微生物计数法前处理的影响因素和优化方法 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202403014
    [6] 彭莹, 刘欣, 聂依文, 王歆荷, 年华, 朱建勇.  三种狼毒乙醇提取物对咪喹莫特诱导的银屑病小鼠防治作用研究 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202406029
    [7] 何静, 安晔, 张朝绅.  复方黑参滴丸与复方黑参丸药效学实验比较研究 . 药学实践与服务, 2025, 43(1): 17-21. doi: 10.12206/j.issn.2097-2024.202404009
    [8] 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟.  花椒生物碱富集纯化工艺优化及其成分分析 . 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
    [9] 陈方剑, 赵娟娟, 叶侃倜, 孙煜昕, 刘继勇, 杨骏.  血通胶囊提取工艺优化及质量控制研究 . 药学实践与服务, 2025, 43(2): 82-86, 91. doi: 10.12206/j.issn.2097-2024.202409003
    [10] 乔方良, 蒋益萍, 夏天爽, 刘爱军, 赵凯, 辛海量.  对萼猕猴桃苷E提取分离纯化工艺的研究 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202407001
    [11] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [12] 崔晓林, 付晓菲, 杜艳红, 刘娟, 朱茜, 刘子祺.  临床药师参与吉瑞替尼致QTc间期延长的病例分析 . 药学实践与服务, 2024, 42(6): 263-266. doi: 10.12206/j.issn.2097-2024.202309050
    [13] 尹小娟, 台力丽, 肖俊峰, 季波.  铜绿假单胞菌合并按蚊伊丽莎白菌肺部感染的病例分析 . 药学实践与服务, 2024, 42(5): 223-226. doi: 10.12206/j.issn.2097-2024.202310042
    [14] 姚瑞阳, 于海征, 李耀盺, 张磊.  丹参FBXL 基因家族的鉴定和表达模式分析 . 药学实践与服务, 2024, 42(11): 461-470. doi: 10.12206/j.issn.2097-2024.202407034
    [15] 陈金涛, 乔子婴, 马明华, 张若曦, 王振伟, 年华.  基于网络药理学和分子对接技术研究金芪清疏颗粒治疗社区获得性肺炎的潜在机制 . 药学实践与服务, 2024, 42(11): 471-478. doi: 10.12206/j.issn.2097-2024.202312014
    [16] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [17] 陈方剑, 骆锦前, 王志君, 胡叶帅, 孙煜昕, 宋洪杰.  HPLC-MS/MS同时测定感冒安颗粒中5种黄酮成分的含量 . 药学实践与服务, 2024, 42(9): 402-406. doi: 10.12206/j.issn.2097-2024.202403030
    [18] 顾佳钰, 胡馨儿, 王晓飞, 张颖, 张海, 曹岩.  侧流免疫层析定量检测方法的研究进展 . 药学实践与服务, 2024, 42(7): 273-277, 284. doi: 10.12206/j.issn.2097-2024.202307037
    [19] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [20] 凯丽比努尔·奥布力艾散, 李倩, 谢志, 贾文彦, 尹东锋.  星点设计-效应面法优化仑伐替尼混合胶束的制备工艺 . 药学实践与服务, 2024, 42(11): 495-502. doi: 10.12206/j.issn.2097-2024.202403019
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  4099
  • HTML全文浏览量:  1259
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-28
  • 修回日期:  2023-03-11
  • 刊出日期:  2023-04-25

复方羊蛇颗粒处方药材提取工艺的优化研究

doi: 10.12206/j.issn.2097-2024.202207103
    基金项目:  上海市科委生物医药科技支撑项目(20S21900300);上海市卫生健康委员会中医药科研项目(2022QN081)
    作者简介:

    郁建超,工程师,在职硕士研究生,Email:15628829629@163.com

    通讯作者: 刘继勇,博士,主任药师、教授,研究方向:基于临床需求的药物新型递药系统及临床药学,Email:liujiyong@fudan.edu.cn

摘要:   目的  优化医院制剂复方羊蛇颗粒处方药材的提取工艺。  方法  建立处方中有效成分去乙酰车叶草酸甲酯、阿魏酸的高效液相定量方法,并以去乙酰车叶草酸甲酯、阿魏酸的含量以及提取物干浸膏得率为指标,采用星点设计—效应面法对复方羊蛇颗粒处方的浸膏提取工艺进行优化。  结果  建立的复方羊蛇颗粒中有效成分的高效液相定量方法符合方法学验证要求。通过星点设计—效应面法优化的最佳提取工艺为:提取溶媒的用量为处方药材量的12倍,醇沉浓度为73%,提取时间为每次60分钟。  结论  本研究成功建立了复方羊蛇颗粒有效成分的高效液相色谱定量方法,经优化后的提取工艺操作简单易行、重复性良好。

English Abstract

王吉荣, 杨道秋, 孙治国, 韩涵, 邓莉. 盐酸吉西他滨联合铁死亡诱导剂对PANC-1细胞的增殖抑制作用[J]. 药学实践与服务, 2023, 41(4): 234-239. doi: 10.12206/j.issn.2097-2024.202212051
引用本文: 郁建超, 马超, 王萌萌, 李丹, 刘荣美, 刘继勇. 复方羊蛇颗粒处方药材提取工艺的优化研究[J]. 药学实践与服务, 2023, 41(4): 240-244. doi: 10.12206/j.issn.2097-2024.202207103
WANG Jirong, YANG Daoqiu, SUN Zhiguo, HAN Han, DENG Li. Inhibitory effects of gemcitabine hydrochloride combined with ferroptosis inducers on the proliferation of PANC-1 cells[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(4): 234-239. doi: 10.12206/j.issn.2097-2024.202212051
Citation: YU Jianchao, MA Chao, WANG Mengmeng, LI Dan, LIU Rongmei, LIU Jiyong. Optimization of extraction process of prescription medicinal materials of compound Yangshe granules[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(4): 240-244. doi: 10.12206/j.issn.2097-2024.202207103
  • 复方羊蛇颗粒是复旦大学附属肿瘤医院治疗宫颈癌的特色制剂(批准文号:Z05170707)。该制剂系中西医结合科、妇科等老一辈专家治疗宫颈癌的经验之集成,在临床应用已有20余年。由白花蛇舌草、蜀羊泉、茜草、漏芦、当归、党参、白术(麸炒)等七味中药组成,以白花蛇舌草、蜀羊泉为君药,起清热解毒、消痛散结之功,缓解本病湿热毒邪之病机[1-2];以清热利湿,解毒消肿之功效的茜草、漏芦、当归为臣药,消除本病瘀毒内蕴之病因[3-5];伍用调和脾胃、调理脏腑功能的党参、白术为佐使药[6-7],起益气扶正之效。该方治疗宫颈癌效果显著,且具用药安全、服用方便、价格低廉等特点。但该医院制剂无明确的质控标准,限制了其临床应用。

    为了对复方羊蛇颗粒进行规范化的新药临床前研究,本研究应用高效液相色谱仪建立了复方羊蛇颗粒中主要有效成分去乙酰车叶草酸甲酯(DME)和阿魏酸(FC)的含量测定方法,为复方羊蛇颗粒的质量控制提供新的定量指标。同时,在保留复方羊蛇颗粒原水提、醇沉工艺的基础上,采用星点设计-效应面法,以提取物的干浸膏得率及其有效成分DME、FC的含量为考察指标,对水提时的溶媒用量和提取时间以及醇沉时的乙醇浓度等因素进行优化,以提高复方羊蛇颗粒的质量和提取效率。

    • HPLC-1260 II高效液相色谱仪(美国Angilent公司);MS105DU电子分析天平(瑞士MettlerToledo公司);YP602N电子天平(上海菁海仪器有限公司);SK7200LHC超声波清洗器(上海科导超声仪器有限公司);ZX98-1旋转蒸发仪(LOOYE公司);冷冻干燥机(美国VirTis公司)。

      去乙酰车叶草酸甲酯(纯度> 98%,深圳鼎邦化学品有限公司);阿魏酸(纯度> 99.4%,中国食品药品检定研究院);白花蛇舌草(批号:20200911-1)、蜀羊泉(批号:20200903-1)、茜草(批号:20201020-1)、禹州漏芦(批号:20200805-1)、当归(批号:20200914-1)、党参(批号:20201012-1)、蜜麸白术(批号:20201010-1)购自上海万仕诚药业有限公司(上述药材经上海中医药大学杨骏教授鉴定,均符合2020版《中国药典》规定,样品保存于复旦大学附属肿瘤医院);甲醇、乙腈为色谱纯(美国Fisher公司);纯化水(自制);其他试剂为分析纯。

    • 按处方量称取白花蛇舌草、蜀羊泉、茜草、漏芦、当归、党参、白术(麸炒),取适量纯化水将处方药材煎煮2次,合并煎煮液并过滤,将滤液冷却至室温后,再加入适量的95%乙醇,于4 ℃条件下静置24 h,再次过滤,滤液通过减压浓缩法回收乙醇,经冷冻干燥处理,即得复方羊蛇颗粒提取物干浸膏[8]。浸膏得率按以下公式计算[9]

      $$ \text{浸膏得率}=(W_{1}/W_{2})\times 100\% $$

      式中:W1为干浸膏质量,W2为处方药材质量。

    • 色谱柱:Agilent ZORBAX SB-C18柱(4.6 mm×250 mm,5 μm);柱温:30 ºC;流动相: 0.05% 甲酸水溶液(A)−乙腈(B);流速:1.0 ml/min;检测波长:236 nm;进样量:20 μl。

      洗脱梯度:0~6 min,2%~5% B;6~12 min,5% B;12~30 min,5%~15% B;30~45 min,15%~35% B;45~50 min,98% B;50~60 min,2% B。

    • 分别精密称取DME和FC对照品各10 mg,加甲醇溶解并定容至10 ml量瓶中,得1 mg/ml的DME和1 mg/ml的FC储备液。分别精密量取DME和FC对照品储备液1 ml于10 ml量瓶中,加超纯水定容至刻度,配成100 μg/ml的混合对照品溶液。

    • 精密称取复方羊蛇颗粒干浸膏200 mg于10 ml量瓶中,加超纯水对其进行溶解并定容,经0.22 μm针式过滤器滤过后,配成浓度为20 mg/ml的供试品溶液。

    • 按复方羊蛇颗粒处方及干浸膏制备工艺,制备不含白花蛇舌草和当归的阴性样品,并按“2.2.3”项下方法制成阴性对照溶液。

    • 取混合对照品溶液加超纯水配置成10 μg/ml的对照品工作液,并取供试品溶液和阴性对照溶液,按“2.2.1”项下色谱条件测定,对各溶液中的DME和FC的出峰情况进行考察,色谱图如图1所示。结果显示,混合对照品溶液和供试品溶液中DME和FC色谱峰的保留时间分别在17 min和38 min左右;而阴性对照溶液在此保留时间处无明显干扰色谱峰,结果表明,该色谱条件的专属性较强。

      图  1  去乙酰车叶草酸甲酯和阿魏酸专属性考察

    • 精密量取“2.2.2”项下混合对照品溶液,加超纯水逐级稀释成为0.2、0.5、1.0、2.0、5.0、10.0、20.0、50.0、100.0 μg/ml的系列浓度溶液。采用高效液相色谱仪,检测并记录不同药物浓度的色谱峰,以药物浓度(X)为横坐标,以色谱吸收峰面积(Y)为纵坐标,进行线性回归。经计算,DME的线性方程为Y=25.513X–3.1431 (r>0.9995),FC的线性方程为Y=61.035X–13.494(r>0.9995)。结果显示DME和FC在浓度为0.2~100.0 μg/ml内,药物浓度和吸收峰面积的线性关系良好。

    • 按“2.2.1”项下色谱条件,采用浓度为1.0、10.0和50.0 μg/ml 的混合对照品溶液对高效液相色谱仪的精密度进行考察,一天内对每种溶液测定6次,连续测3天,并记录峰面积。3种不同浓度的DME和FC的日内、日间精密度的RSD皆<3%,表明精密度良好。

    • 按上述方法配制浓度为20 mg/ml的供试品溶液,按“2.2.1”项下色谱条件,分别测定该溶液于室温下放置0、2、4、6、12、24 h后的色谱峰面积。经计算,24 h内,DME吸收峰面积的RSD为1.92%,FC吸收峰面积的RSD为2.74%,结果表明配制的供试品溶液在24 h内保持稳定。

    • 按照供试品溶液制备方法,平行制备6份供试品溶液,按“2.2.1”项下色谱条件,取20 μl连续进样6次,并记录峰面积。DME吸收峰面积的RSD值为2.24 %,FC吸收峰面积的RSD值为2.97 %,结果表明该方法的重复性良好。

    • 精密量取上述配制的供试品溶液1 ml置于2 ml量瓶中,并分别加入DME对照品储备液10、20和30 μl和FC对照品储备液5、10、15 μl,溶解、过滤后。按“2.2.1”项下色谱条件进样分析,考察采用该色谱条件检测DME和FC的加样回收率。经计算得到DME低、中、高浓度的加样回收率分别为(97.76±0.28)%、(98.95±1.85)%和(102.11±0.39)%;FC低、中、高浓度的加样回收率分别为(102.66±2.95)%、(99.28±1.93)%和(102.41±2.69)%。结果表明该测定方法准确性好,可用于样品中DME和FC的含量测定。

    • 取供试品溶液,稀释至适当浓度后,按“2.2.1”项下色谱条件测定DME和FC的峰面积,根据线性方程,计算供试品中代表性活性成分的含量。

    • 以复方羊蛇颗粒处方药材的干浸膏得率、DME和FC的含量作为指标,采用Design-Expert软件(10.0.14)进行星点设计—效应面法优化[10],考察提取时的溶媒用量(x1)、提取时间(x2)和醇沉浓度(x3)等因素对提取的影响,优选出最佳提取工艺,3因素5水平的因素水平见表1

      表 1  复方羊蛇颗粒处方药材提取工艺优化星点设计因素水平表

      水平溶媒用量(x1提取时间(x2醇沉浓度(x3
      −1.6826.6439.5553.18
      −186060
      0109070
      11212080
      1.68213.36140.4586.82
    • 按上述3因素5水平制备不同提取工艺的供试品, 以“2.2.11 ”项下样品含量测定方法测定DME和FC含量。以DME含量、FC含量、干浸膏得率的总评“归一值”(OD)作为评价指标。通过Hassan法对各指标进行归一化处理,计算公式如(1、2)所示,并按照公式(3)计算各指标“归一值”的几何平均数,得总评“归一值” [11-12]

      $$ {d}_{min}=\left({y}_{max}-{y}_{i}\right)/\left({y}_{max}-{y}_{min}\right) $$ (1)
      $$ {d}_{max}=\left({y}_{i}-{y}_{min}\right)/\left({y}_{max}-{y}_{min}\right) $$ (2)
      $$ OD={\left({d}_{1}\times {d}_{2}\times {d}_{3}\right)}^{1/3} $$ (3)

      式中:dmin为取值越小越好的指标(干浸膏得率)的数学转化“归一值”,dmax为取值越大越好的指标(DME和FC含量)的数学转化“归一值”,yi为该次提取的实测值,ymaxymin分别为各指标在优化实验中的最大值和最小值;OD为总评“归一值”,d1、d2、d3分别为DME含量、FC含量和干浸膏得率的“归一值”。

      复方羊蛇颗粒提取工艺优化的星点设计表及“总评归一值”结果见表2

      表 2  复方羊蛇颗粒提取工艺优化的星点设计表及结果

      试验号x1x2x3DME含量(μg/g)FC含量(μg/g)浸膏得率(%)OD
      11090700.030.0125.240.58
      28120600.040.0133.220.33
      31090700.030.0124.970.59
      41090700.030.0126.370.50
      51039.55700.030.0124.340.50
      613.3690700.030.0129.250.40
      7109053.180.030.0131.070.31
      812120600.040.0134.120.00
      91090700.030.0126.010.57
      108120800.030.0121.120.25
      111090700.030.0127.790.55
      1212120800.030.0124.120.49
      13860800.030.0121.980.25
      14860600.030.0126.520.00
      151090700.030.0126.270.56
      1610140.45700.030.0128.410.49
      171260600.030.0129.710.49
      181260800.030.0123.600.69
      19109086.820.030.0118.640.00
      206.6490700.030.0124.590.31

      采用Design Expert 10.0.14对提取优化的实验数据进行分析,模型预测及其缺适性检验结果如表3所示,结果表明二项式模型具有更好的预测性,并对其进行进一步回归分析及方程拟合,表4结果显示,模型P值为0.0433(<0.05),表明建立的二项式模型具有显著性。提取时的溶媒用量、提取时间和醇沉浓度的交互作用对复方羊蛇颗粒提取“总评归一值(OD)”的三维效应面和二维等高线如图2所示。预测的最佳提取条件为:提取的溶媒用量为处方药材量的12倍,醇沉浓度为73%,提取时间为每次60 min。预测OD值为0.703。

      表 3  缺适性检验及模型统计结果

      来源平方和自由度均方FP
      线性项0.72110.06664.28>0.0001
      2因子交互项0.5680.07068.40>0.0001
      二项式项0.2150.04240.61>0.0005
      三项式项1.984×10−411.984×10−40.190.6781

      表 4  二项式模型的回归分析及方程拟合

      参数自由度方程系数FP
      模型90.0683.170.0433
      x110.0733.430.0939
      x210.0100.480.5046
      x318.57×10−30.400.5400
      x1 x210.136.030.0340
      x1 x310.0351.650.2277
      x2 x311.602×10−47.52×10−30.9326
      x1210.0783.680.0840
      x2218.533×10−30.400.5409
      x3210.3014.120.0037

      图  2  溶媒用量、提取次数和醇沉浓度的交互作用对复方羊蛇颗粒提取的影响

    • 称取处方量药材3份,对上述星点设计-效应面法优化的最佳提取工艺进行验证:加入处方药材质量的12倍蒸馏水煎煮2次,每次60 min,合并、浓缩提取液,加95%乙醇适量,使乙醇浓度至73%,于4 ℃条件下静置24 h,除去沉淀、过滤,并回收乙醇。将得到的浸膏进行冷冻干燥,即得复方羊蛇颗粒提取物干浸膏。计算浸膏得率,按照“2.2.11”项下样品含量测定方法测定DME和FC的含量,并计算OD值,结果见表5。结果显示实测OD值与预测OD值的偏差为5.47%,表明建立的复方羊蛇颗粒的提取优选方案合理。

      表 5  复方羊蛇颗粒提取工艺验证结果

      试验号DME含量
      (μg/g)
      FC含量
      (μg/g)
      浸膏得率
      (%)
      实测
      OD值
      预测值偏差
      (%)
      10.030.0118.540.680.7035.47
      20.030.0118.370.77
      30.030.0118.550.78
      RSD (%)1.553.360.556.42
    • 复方羊蛇颗粒疗效确切、安全性良好,为保证其临床疗效稳定和适应医院制剂规模化生产的要求,本研究保留了原水提工艺对处方进行提取,增加醇沉步骤,并对提取的溶媒用量、提取时间、醇沉浓度等影响因素进行考察,以优化复方羊蛇颗粒工艺。

      本研究采用星点设计—效应面法对复方羊蛇颗粒处方药材的提取工艺进行三因素五水平优化,各因素的水平值设定是依据原医院制剂水提工艺以及提取经验,原医院制剂的提取工艺为加10倍和12倍量水煎煮两次,分别为90和120 min。因此,在本工艺研究中(各因素的5个水平为±1.682、0、±1),将溶媒用量和提取时间的±1水平分别设置8、12倍以及60和120 min。原制备工艺中无醇沉步骤,根据文献及经验值,将乙醇浓度的±1水平设置为60%和80%。在考察指标的选择上,考虑到原处方服用量较大,把干浸膏得率也纳入考察指标,故以方中活性成分DME、FC含量以及干浸膏得率为指标进行提取工艺优化。本研究中提取的干浸膏中DME、FC的含量作为考察指标,其值越大越好;为提高提取效率,以干浸膏得率作为优化指标,使有效成分含量高而杂质含量少,其值越小越好。采用Hassan方法对三个指标求算“归一值”,并对所有指标的“归一值”求总评“归一值”作为最终指标。以优选的参数进行3批干浸膏提取,实际测得的干浸膏得率、DME、FC含量的总评“归一值”与预测一致,表明本研究采用的优化工艺对干浸膏的提取率较高、且重复性良好。由于该优化设计考察的自变量为可连续的变量,而提取时的提取次数为非连续变量,因此,根据经验,将提取次数固定为2次。

      复方羊蛇颗粒原质控标准利用薄层法进行定性鉴别,无定量质控指标。本研究建立了复方羊蛇颗粒中君药白花蛇舌草、臣药当归的主要有效成分DME、FC的高效液相色谱含量测定方法,为复方羊蛇颗粒的质量控制提供新的定量指标。

参考文献 (12)

目录

/

返回文章
返回