留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

吡喃鎓衍生物N2的体外抗真菌活性研究

邓忠宇 郭士槿 郭熠凡 冯峻程 吕权真 邱丽娟

汤玉珍, 张俊平. 肝星状细胞核糖体蛋白S5(RPS5)特异性敲减对肝纤维化的影响[J]. 药学实践与服务, 2023, 41(4): 227-233. doi: 10.12206/j.issn.2097-2024.202209007
引用本文: 邓忠宇, 郭士槿, 郭熠凡, 冯峻程, 吕权真, 邱丽娟. 吡喃鎓衍生物N2的体外抗真菌活性研究[J]. 药学实践与服务, 2023, 41(10): 610-615. doi: 10.12206/j.issn.2097-2024.202305035
TANG Yuzhen, ZHANG Junping. Effects of specific knockdown of ribosomal protein S5 in hepatic stellate cells on liver fibrosis[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(4): 227-233. doi: 10.12206/j.issn.2097-2024.202209007
Citation: DENG Zhongyu, GUO Shijin, GUO Yifan, FENG Juncheng, LV Quanzhen, QIU Lijuan. Investigation on the antifungal activity of pyranium derivatives N2[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(10): 610-615. doi: 10.12206/j.issn.2097-2024.202305035

吡喃鎓衍生物N2的体外抗真菌活性研究

doi: 10.12206/j.issn.2097-2024.202305035
基金项目: 海军军医大学大学生创新能力培养基金
详细信息

Investigation on the antifungal activity of pyranium derivatives N2

  • 摘要:   目的   研究N2系列化合物的抗真菌作用。  方法   利用微量液基稀释法考察化合物N2系列化合物的体外抗真菌活性;在菌丝和被膜诱导条件下考察N2化合物对白念珠菌菌丝和被膜形成的抑制效果。  结果   N2化合物对临床常见条件致病真菌白念珠菌有明显抗真菌活性; N2化合物可以明显抑制白念珠菌菌丝生长和被膜的形成;N2化合物可以通过损伤白念珠菌细胞膜和细胞壁发挥杀菌作用。  结论   N2化合物具有较为广泛的抗真菌谱,能起到明显的体外抗真菌效果,对真菌菌丝和生物被膜的形成均有明显的抑制作用,可以认为N2化合物具有抗真菌潜力,可作为先导化合物,指导进一步改造。筛选获得了具有抗真菌活性的N2化合物,为抗真菌药物研发和解决真菌耐药问题提供新思路。
  • 光动力治疗(PDT)基于光辐照聚集光敏剂的肿瘤组织,由光敏剂诱发光动力反应形成单线态氧(1O2)等活性氧(ROS),通过对肿瘤细胞和肿瘤血管的直接杀伤及激活机体系统免疫反应等多种机制发挥抗肿瘤作用[1-3]。二氢卟吩及菌绿素类光敏剂是PDT新药研究的热点[4-8]。其中,已获批上市的代表药物有他拉泊芬(talaporfin)和帕利泊芬(padeliporfin)等[9, 10]

    光敏剂作为结构非特异性药物,存在缺乏肿瘤靶向性摄入和明确的作用药靶等缺陷。此外,PDT受制于局部治疗,对浸润较深的肿瘤组织,及已发生转移的肿瘤疗效有限。目前,PDT和化疗联用是克服上述缺陷,提高PDT疗效最为普遍和有效的策略之一。研究表明,抗代谢化疗药物氟尿嘧啶(5-Fu)与PDT联用具有协同抗肿瘤作用[11-13]。据此,我们设想利用在肿瘤微环境下能响应性断裂的连接基团(linker)将光敏剂与化疗药物偶联,希望实现二者在肿瘤组织的靶向释放,从而发挥其PDT和化疗协同抗肿瘤作用。酰腙键是酸敏感化学键,常被用来连接载体,以药物制备智能药物载体。这种药物载体到达肿瘤细胞的内涵体或溶酶体中时,会发生酸性水解将药物有效释放出来。因此,本文针对肿瘤微环境呈弱酸性的特点,采用药物化学最经典的前药设计策略,以脱镁叶绿素a(Phephorbide a)粗提物经酸碱降解制得的二氢卟吩e63[14]为先导光敏剂,通过其152-羧基与抗肿瘤药物5-Fu以酸敏感酰腙键连接,设计合成pH响应型光化疗协同抗肿瘤光敏剂二氢卟吩e6-偕氟尿嘧啶(1),并考察其体外PDT抗肿瘤活性和pH响应性5-Fu释放,及其对黑色素瘤B16-F10和肝癌HepG2细胞的光动力抗癌活性及其作用机制,以期获得高效、低毒的PDT治癌药物候选药物,合成路线见图1

    图  1  二氢卟吩e6 -偕氟尿嘧啶光敏剂(1)的合成路线
    试剂和反应条件:(i)五硫化二磷,吡啶,回流12 h;(ii)水合肼,甲醇,室温2 h;(iii)浓盐酸,乙醚,4 ℃ 30 min;(iv)25%氢氧化钾甲醇液,回流30 min;(v)a. EDC·HCl,N,N-二甲基甲酰胺,室温8 h;b.二异丙基乙胺,2, N,N-二甲基甲酰胺,室温12 h。

    用Bruker MSL-600型核磁共振仪测定1H NMR,CD3OD为溶剂;用API-3000 LC-MS型电喷雾质谱仪测定质谱(ESI-MS);用岛津UV-160型紫外分光光度计测定UV吸收谱;用日立F-7000荧光分光光度计测定荧光发射谱;用Shimazu LC-20AD HPLC仪测定化合物1的相对纯度及其5-Fu的体外释放。色谱柱型号为Waters Xterra C18柱,流动相:乙腈-0.3%乙酸水溶液(80 : 20);流速:1.0 ml/min;检测波长:400 nm(化合物1的相对纯度)或254 nm(5-Fu释放);柱温:30 ℃;进样量:20 μl。柱色谱分离用TELEDYNE ISCO的快速制备色谱Combi Flash@Rf+仪,硅胶H作为固定相。PDT抗癌活性测试使用BWT半导体激光仪(北京凯普林,波长为660 nm);用流式细胞仪(BD Accuri C6,美国)(激发波长:488 nm,发射波长:525 nm)检测受试肿瘤细胞样品的ROS水平、细胞凋亡率和细胞周期阻滞。

    二氢卟吩e63)按照文献[14]的方法制备;其它实验用材料和化学试剂均为市售商品。

    取氟尿嘧啶(0.2 g,1.563 mmol)溶于无水吡啶(10 ml),加入五硫化二磷(0.298 g,1.563 mmol),加热回流12 h。反应完毕,减压回收溶剂,残物加乙酸乙酯溶解(100 ml),用0.1 mol/L HCl洗涤(50 ml×2),无水Na2SO4干燥,减压除去溶剂得4-硫代-5-氟尿嘧啶粗品。上述4-硫代-5-氟尿嘧啶粗品加甲醇(10 ml)溶解,于0 ℃下滴加N2H4·H2O(0.316 g,6.252 mmol),室温继续搅拌2 h。反应完毕,减压抽滤,P2O5真空干燥得固体化合物5-氟尿嘧啶-4-腙(2)中间体,直接用于下步反应。取二氢卟吩e6(0.1 g,0.168 mmol)溶于无水DMF(10 ml),加1-乙基-(3-二甲氨基丙基)碳二亚胺盐酸盐(EDC·HCl)(0.035 g,0.183 mmol),室温搅拌反应6 h后再加入中间体2(0.031 g,0.218 mmol),继续搅拌36 h。反应完毕,反应液加入10倍体积量乙酸乙酯,饱和NaCl水溶液洗涤(50 ml×3),无水Na2SO4干燥,减压回收溶剂所得固体经快速制备色谱梯度洗脱分离纯化(流动相为二氯甲烷/甲醇/甲酸=15∶1∶0.1~8∶1∶0.1)得黑色固体1纯品0.048 g,产率39.6%。UV-vis λmax (MeOH, nm) (ε, M−1cm−1):660 (3.15×104), 510 (0.82×104), 402 (8.13×104)。1H-NMR (600 MHz, CD3OD, δ, ppm): 9.79 (s, 1H, 10-CH), 9.73 (s, 1H, 5-CH), 9.07 (s, 1H, 20-CH), 8.19 (dd, J = 18.0, 12.0 Hz, 1H, 31-CH), 7.29 (s, 1H, 5-Fu的6-CH), 6.38 (d, J = 18.0 Hz, 1H, 32-CHB), 6.15 (d, J = 12.0 Hz, 1H, 32-CHA), 5.35 (s, 2H, 151-CH2), 4.65 (m, 2H, 17-CH和18-CH), 3.84 (q, J = 7.5 Hz, 2H, 81-CH2), 3.63 (s, 3H, 12-CH3), 3.53 (s, 3H, 2-CH3), 3.30 (s, 3H, 7-CH3), 2.3~2.0 (m,4H , 171-CH2 和172-CH2), 1.76 (m, 6H¸ 18-CH3和82-CH3)。MS (ESI+) m/z: 723.63 (M+H)+ (100%)。元素分析(C38H39N8O6F,%)计算值:C 63.16, H 5.40, N 15.48;实测值:C 63.34, H 5.38, N 15.43。HPLC测定纯度:95.2%。

    分别测定目标化合物1及其先导化合物二氢卟吩e63)的甲醇溶液(10 μmol/L)在300~800 nm处的紫外吸收谱和激发波长为400 nm的荧光发射光谱,结果见图2

    图  2  化合物1甲醇液(10 μmol/L)的紫外吸收谱和荧光发射谱(λEx=400 nm)
    A. 紫外吸收谱; B. 荧光发射谱

    分别配制浓度为50 μmol/L的化合物1的HOAc-NaOAc缓冲液(pH 5.0)和PBS溶液(10 ml),并于0.5、1.0、3.0、6.0、12、24 h时分别取样(500 μl)。其中,HOAc-NaOAc缓冲液(pH 5.0)组取样液用0.1 mol/L氢氧化钠水溶液迅速调节pH值至7.4。每份取样液加PBS稀释至原溶液1/3浓度,微孔滤膜(孔径0.22 μm)过滤,HPLC进样检测;实验重复3次。根据5-Fu的HPLC峰面积-浓度标准曲线分析计算,绘制目标化合物1于弱酸(pH 5.0)中的5-Fu体外释放量-时间曲线,结果见图3

    图  3  化合物1的体外pH响应性5-Fu累积释放量-时间曲线(n=3)
    2.3.1   细胞孵育

    参照文献[6-8]的方法进行。

    2.3.2   细胞暗毒性测试

    参照文献[6-8]的方法,每孔5×103个B16-F10细胞或HepG2细胞悬液(100 μl)接种于96孔板上,加入等体积上述细胞培养液孵育24 h;更换含不同浓度待测物的培养液(DMSO浓度小于1%,100 μl),继续避光孵育48 h;再更换含10%(V/V)CCK-8(Beyotime,中国)的RPMI 1640基础培养基(100 μl),继续培养1.5 h,然后用Varioskan Flash全波长酶标仪(Thermo)于波长450 nm处测定每孔的吸光度值,计算各浓度对应的细胞存活率,并拟合得到待测物的肿瘤细胞半数抑制浓度即IC50值。

    2.3.3   细胞光毒性测试

    每孔5×103个B16-F10细胞或HepG2细胞悬液(100 μl)接种于96孔板上,加入等体积细胞培养液孵育24 h;更换含不同浓度待测物的细胞培养液(DMSO浓度小于1%,100 μl),继续避光孵育24 h;再更换新鲜培养液(100 μl),以波长为660 nm的激光辐照受试细胞样品(光照剂量为10 J/cm2),继续孵育24 h。最后按“2.3.2”项下CCK-8法测定各待测物的肿瘤细胞IC50值。

    2.3.4   实验结果

    以临床光敏药物他拉泊芬为阳性对照,化合物1及其先导化合物3对肿瘤细胞株的体外PDT抗癌活性结果见表1

    表  1  目标化合物1的体外光动力抗癌活性(IC50,μmol/L)
    化合物 B16-F10细胞 暗毒/光毒比 HepG2细胞 暗毒/光毒比
    暗毒性 光毒性 暗毒性 光毒性
    化合物 1 46.84±8.46*, ΔΔΔ 0.73±0.16**, ΔΔΔ 64.2 50.80±6.45**, #, ΔΔΔ 0.90±0.22**, ΔΔΔ 56.4
    二氢卟吩e6 69.72±4.69 3.36±0.59 20.8 70.38±10.9 2.75±0.41 25.6
    他拉泊芬 254.8±18.8 11.31±3.88 22.5 176.4±28.4 15.47±5.07 11.4
    5-Fu 35.80±6.68 NTa 39.16±2.7 NTa
    NTa:未测定;*P < 0.05,**P < 0.01,与二氢卟吩 e6组比较;#P < 0.05,与5-Fu组比较;ΔΔΔP < 0.001,与他拉泊芬组比较。
    下载: 导出CSV 
    | 显示表格

    操作步骤如下:a. 每孔3 × 105个B16-F10细胞悬液(2 ml)接种6孔板上,按“2.3.1”项条件避光孵育24 h;b. 分别更换含一定浓度化合物1或他拉泊芬的新鲜培养液(DMSO浓度小于1%,2 ml),继续避光孵育24 h;c. 加入10 mmol/L DCFH-DAROS荧光检测探针(Beyotime,1.5 μl),吹打混匀,继续避光孵育20 min;d. PBS洗涤3次,再加新鲜培养液(2 ml),以660 nm波长的激光辐照(光剂量10 J/cm2)细胞样品,继续避光孵育20 min;e. 收集每孔细胞样品,用流式细胞仪检测各孔细胞ROS水平,结果见图4

    图  4  目标化合物1诱导B16-F10细胞产生活性氧的水平

    按“2.4”项下操作方法,仅从步骤c开始,更换新鲜培养液(2 ml),用660 nm波长的激光辐照(光剂量10 J/cm2)细胞样品,继续避光孵育20 min;d. 以1 500 r/min离心(5 min)细胞样品,PBS洗涤,再以1 000 r/min离心(5 min)后获取细胞样品;e. 按Annexin V-FITC细胞凋亡检测试剂盒(Beyotime)操作流程操作,结果见图5

    图  5  目标化合物1诱导B16-F10细胞凋亡
    *P<0.05,与10 J/cm2比较。

    按“2.5”项下操作方法,仅在e步骤中,换以细胞周期阻滞检测试剂盒(Beyotime)的操作流程,每份细胞样品中分别加入染色缓冲液(300 µl)、RNase A(6 µl)和碘化丙啶染色液(15 µl),轻轻混匀,避光孵育20 min后,用流式细胞仪进行细胞周期阻滞检测,结果见图6

    图  6  目标化合物1对B16-F10细胞周期的阻滞作用

    按文献[14]方法制得的二氢卟吩e63)为先导化合物,经1-乙基-(3-二甲氨基丙基)碳二亚胺盐酸盐(EDC·HCl)于无水DMF中催化分子内脱水缩合制得二氢卟吩e6-131,152-酸酐活泼中间体[15],然后直接与中间体2发生酰化反应成功合成得到了光化疗双模抗肿瘤光敏剂二氢卟吩e6-偕氟尿嘧啶(1),反应收率达39.6%,其结构经UV、ESI-MS、1H NMR及元素分析确证。

    化合物1在甲醇中最大紫外吸收波长和荧光发射波长(激发波长:400 nm)分别为660 nm和670 nm,与先导物3相一致,表明先导物3以酰腙键偶联5-Fu后,并没有改变其作为光敏剂特有的紫外吸收和荧光发射光谱等光物理特性。此外,化合物1在弱酸(pH 5.0)条件下,能有效释放5-Fu,24 h内累积释放率可达60.3%;但在pH 7.4的条件下较为稳定,24 h内5-Fu累积释放率仅为5%。

    体外PDT抗癌活性测试结果显示,化合物1对B16-F10和HepG2细胞株的光毒活性和暗毒/光毒比(治疗指数)均显著优于先导物二氢卟吩e63)(P<0.005)和他拉卟吩(P<0.001),其IC50值分别达0.73 μmol/L和0.90 μmol/L。

    体外PDT抗癌机制研究提示,化合物1介导的PDT能显著提升B16-F10细胞内ROS水平和诱导B16-F10细胞凋亡,并阻滞肿瘤细胞周期于S期。

    总之,二氢卟吩e6-偕氟尿嘧啶(1)具有PDT抗癌活性强、治疗指数(暗毒/光毒比)高且可在肿瘤弱酸环境中有效释放5-Fu等优点,从而实现“单分子”光化疗协同抗肿瘤作用,值得进一步开发研究。

  • 图  1  纸片扩散法抑菌实验单位(m/μg)

    图  2  生长曲线

    图  3  杀菌曲线

    图  4  N2处理后白念珠菌菌丝形态

    图  5  N2抑制白念珠菌的生物被膜形成

    *P<0.05, **P<0.01, ***P<0.001,与对照组比较

    图  6  白念珠菌透射电镜照片

    表  1  N系列化合物对氟康唑耐药白念珠菌103和538的MIC80

    化合物结构式白念珠菌103 MIC80 (μg/ml)白念珠菌538 MIC80 (μg/ml)
    N1>16>16
    N20.51
    N3>1616
    N4>16>16
    N5>16>16
    N688
    N7>16>16
    N8168
    N9>16>16
    下载: 导出CSV

    表  2  N2化合物处理后菌株对应MIC80

    菌株名称
    N2 MIC80(μg/ml)
    C. albicans SC5314 0.5
    C. albicans 876 1.0
    C. albicans 311 0.5
    C. albicans 538 1.0
    C. albicans 103 0.5
    C. albicans 911 0.5
    C. albicans 849 1.0
    C. albicans 100 1.0
    C. albicans 32 0.5
    C. albicans 1010 1.0
    Cryptococcus H99 1.0
    Cryptococcus 30609 2.0
    C. glabrata 537 0.5
    C. tropicalis 293 0.5
    C. parapsilosis 22019 0.5
    C. krusei 463 2.0
    下载: 导出CSV
  • [1] BERMAN J, KRYSAN D J. Drug resistance and tolerance in fungi[J]. Nat Rev Microbiol, 2020, 18(6):319-331. doi:  10.1038/s41579-019-0322-2
    [2] LEE Y J, PUUMALA E, ROBBINS N, et al. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond[J]. Chem Rev, 2021, 121(6):3390-3411. doi:  10.1021/acs.chemrev.0c00199
    [3] OLIVER J D, SIBLEY G E M, BECKMANN N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase[J]. Proc Natl Acad Sci USA, 2016, 113(45):12809-12814. doi:  10.1073/pnas.1608304113
    [4] MOTA FERNANDES C, DASILVA D, HARANAHALLI K, et al. The future of antifungal drug therapy: novel compounds and targets[J]. Antimicrob Agents Chemother, 2021, 65(2):e01719-e01720.
    [5] WONG S S W, KAO R Y T, YUEN K Y, et al. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections[J]. PLoS One, 2014, 9(1):e85836. doi:  10.1371/journal.pone.0085836
    [6] ZHANG Y E, LI Q H, CHAO W, et al. Design, synthesis and antifungal evaluation of novel pyrylium salt in vitro and in vivo[J]. Molecules, 2022, 27(14):4450. doi:  10.3390/molecules27144450
    [7] CHEN X Q, WU J Y, SUN L, et al. Antifungal effects and potential mechanisms of benserazide hydrochloride alone and in combination with fluconazole against Candida albicans[J]. Drug Des Dev Ther, 2021, 15:4701-4711. doi:  10.2147/DDDT.S336667
    [8] FENG W L, YANG J, MA Y, et al. Cotreatment with aspirin and azole drugs increases sensitivity of Candida albicans in vitro[J]. Infect Drug Resist, 2021, 14:2027-2038. doi:  10.2147/IDR.S314538
    [9] VAN OS W, ZEITLINGER M. Predicting antimicrobial activity at the target site: pharmacokinetic/pharmacodynamic indices versus time–kill approaches[J]. Antibiotics, 2021, 10(12):1485. doi:  10.3390/antibiotics10121485
    [10] GIRARDOT M, MILLOT M, HAMION G, et al. Lichen polyphenolic compounds for the eradication of Candida albicans biofilms[J]. Front Cell Infect Microbiol, 2021, 11:698883. doi:  10.3389/fcimb.2021.698883
    [11] FERNÁNDEZ-CALDERÓN M, HERNÁNDEZ-GONZÁLEZ L, GÓMEZ-NAVIA C, et al. Antifungal and anti-biofilm activity of a new Spanish extract of propolis against Candida glabrata[J]. BMC Complement Med Ther, 2021, 21(1):147. doi:  10.1186/s12906-021-03323-0
  • [1] 徐尧, 马春辉, 李志勇.  高血压对心血管纤维化及sFRP2表达的影响 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202409055
    [2] 周文艳, 胡珊珊, 张万年, 庄春林.  Keap1-Nrf2通路在炎症疾病中的研究进展 . 药学实践与服务, 2025, 43(3): 97-108, 116. doi: 10.12206/j.issn.2097-2024.202405013
    [3] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [4] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架治疗创伤性脑损伤的研究 . 药学实践与服务, 2025, 43(2): 67-74. doi: 10.12206/j.issn.2097-2024.202406034
    [5] 吴若南, 汤文敏, 高林, 吴岳林, 罗川, 缪震元.  RRx-001衍生物的合成和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202408053
    [6] 张紫璇, 高苑, 张利, 李佳莉, 徐希科, 祖先鹏.  中药防治急性肺损伤的活性成分及其作用机制研究进展 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202404079
    [7] 郭灵怡, 刘艳超, 高路, 刘瑞瑶, 吕权真, 俞媛.  醋酸卡泊芬净单硬脂酸甘油酯纳米粒抗白色念珠菌感染的增效作用研究 . 药学实践与服务, 2025, 43(3): 136-142, 150. doi: 10.12206/j.issn.2097-2024.202310043
    [8] 江冼芮, 段雅倩, 刘畅, 张成中.  淫羊藿中黄酮苷类化合物的群体感应抑制作用研究 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202409060
    [9] 冯广伟, 张静, 刘阳熙, 崔敏.  消化道穿孔患者术后继发念珠菌血流感染的病例分析 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202312012
    [10] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [11] 宋泽成, 马闪闪, 胡巧灵, 仲华, 王彦.  小檗碱与氟康唑合用抗氟康唑耐受白念珠菌的研究 . 药学实践与服务, 2025, 43(2): 87-91. doi: 10.12206/j.issn.2097-2024.202409047
    [12] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [13] 戴菲菲, 傅翔, 陈琼年, 俞苏纯.  上海某二级医院革兰阴性菌流行特征的回顾性分析 . 药学实践与服务, 2024, 42(12): 528-532. doi: 10.12206/j.issn.2097-2024.202305005
    [14] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [15] 黄韵, 张正银, 金英, 郑怡菁, 李铁军, 孙莉莉.  耐碳青霉烯类肺炎克雷伯菌及大肠埃希菌临床分离株耐药性及耐药基因分析 . 药学实践与服务, 2024, 42(10): 439-444. doi: 10.12206/j.issn.2097-2024.202309059
    [16] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
    [17] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [18] 尹小娟, 台力丽, 肖俊峰, 季波.  铜绿假单胞菌合并按蚊伊丽莎白菌肺部感染的病例分析 . 药学实践与服务, 2024, 42(5): 223-226. doi: 10.12206/j.issn.2097-2024.202310042
    [19] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
    [20] 史生辉, 石飞, 雷琼, 王亚峰, 吴雪花.  青藏高原肺结核合并念珠菌感染患者的病原菌分布特点及耐药率分析 . 药学实践与服务, 2024, 42(6): 260-262, 272. doi: 10.12206/j.issn.2097-2024.202304014
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  5416
  • HTML全文浏览量:  1814
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-20
  • 修回日期:  2023-09-21
  • 网络出版日期:  2023-10-23
  • 刊出日期:  2023-10-25

吡喃鎓衍生物N2的体外抗真菌活性研究

doi: 10.12206/j.issn.2097-2024.202305035
    基金项目:  海军军医大学大学生创新能力培养基金
    作者简介:

    邓忠宇,本科生,Email:2463594426@qq.com

    通讯作者: 邱丽娟,硕士,实验师,研究方向:药理学研究,Email:qiulijuan@smmu.edu.cn

摘要:   目的   研究N2系列化合物的抗真菌作用。  方法   利用微量液基稀释法考察化合物N2系列化合物的体外抗真菌活性;在菌丝和被膜诱导条件下考察N2化合物对白念珠菌菌丝和被膜形成的抑制效果。  结果   N2化合物对临床常见条件致病真菌白念珠菌有明显抗真菌活性; N2化合物可以明显抑制白念珠菌菌丝生长和被膜的形成;N2化合物可以通过损伤白念珠菌细胞膜和细胞壁发挥杀菌作用。  结论   N2化合物具有较为广泛的抗真菌谱,能起到明显的体外抗真菌效果,对真菌菌丝和生物被膜的形成均有明显的抑制作用,可以认为N2化合物具有抗真菌潜力,可作为先导化合物,指导进一步改造。筛选获得了具有抗真菌活性的N2化合物,为抗真菌药物研发和解决真菌耐药问题提供新思路。

English Abstract

汤玉珍, 张俊平. 肝星状细胞核糖体蛋白S5(RPS5)特异性敲减对肝纤维化的影响[J]. 药学实践与服务, 2023, 41(4): 227-233. doi: 10.12206/j.issn.2097-2024.202209007
引用本文: 邓忠宇, 郭士槿, 郭熠凡, 冯峻程, 吕权真, 邱丽娟. 吡喃鎓衍生物N2的体外抗真菌活性研究[J]. 药学实践与服务, 2023, 41(10): 610-615. doi: 10.12206/j.issn.2097-2024.202305035
TANG Yuzhen, ZHANG Junping. Effects of specific knockdown of ribosomal protein S5 in hepatic stellate cells on liver fibrosis[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(4): 227-233. doi: 10.12206/j.issn.2097-2024.202209007
Citation: DENG Zhongyu, GUO Shijin, GUO Yifan, FENG Juncheng, LV Quanzhen, QIU Lijuan. Investigation on the antifungal activity of pyranium derivatives N2[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(10): 610-615. doi: 10.12206/j.issn.2097-2024.202305035
  • 随着唑类抗真菌药物的长期广泛使用,真菌耐药的问题更加凸显[1]。目前,临床上从患者体内分离出的真菌以念珠菌为主,而其中白念珠菌占比40%以上[2]。然而,抗真菌药物极为有限,迫切需要研发新的抗真菌药物。

    近年来,靶向于真菌线粒体的药物是抗真菌药物研究的重要方向,如正在开展临床研究的F901318、聚酮类化合物Ilicicolin-H等 [3-4]。课题组前期在靶向线粒体的药物研究中发现,亲脂性吡啶鎓盐可以破坏白念珠菌的线粒体功能,发挥抗真菌作用,其中带正电荷的吡啶鎓结构是其抗真菌活性的关键[5-6]。为了进一步筛选通过阳离子靶向线粒体的新骨架类型的化合物,我们从国外ChemDiv化合物库,筛选了具有吡啶鎓结构的化合物,考察其抗真菌活性。其中N1~N9是已知化合物,但此前并未有该类化合物应用于抗真菌领域的相关报道。本文通过研究其体外抗真菌效果,探讨其作为抗真菌先导化合物。

    • 洁净工作台[HPeafe-1200LC(A2)上海力申科学仪器有限公司];振荡培养箱(HZ-2111K-B江苏太仓市实验设备厂);微量加样器(Biohit);小型冷冻离心机(HitachiCT15RE);蒸汽灭菌锅(KG-SX500 KAGOSHIMA SELSAKUSYO,Japan);多功能酶标仪(TECAN Infinite M200);倒置相差显微镜(Amersham Pharmacia AMG EVOS×1);紫外分光光度计(Amersham Biosciences Μltrospec10)。

    • 白念珠菌标准菌株SC5314由美国Georgetown大学William A Fonzi教授赠送,临床分离的10株氟康唑耐药的白念珠菌(103、538、876、311、911、849、100、32、1010)、隐球菌2株、光滑念珠菌1株、热带念珠菌1株、近平滑念珠菌1株、克柔念珠菌1株,来自海军军医大学附属长征医院、长海医院皮肤科并经生化和形态学鉴定,N1-N9化合物购自ChemDiv,Inc,二甲基亚砜(DMSO)购自博光生物试剂有限公司,酵母提取物、甘露醇、营养肉汤购自BD公司,蛋白胨、葡萄糖、琼脂购自上海生工生物技术有限公司,RPMI1640购自Gibco公司,氟康唑购自阿拉丁试剂有限公司。

    • 将保存在SDA固体培养皿的白念珠菌单克隆菌株转接到1 ml YEPD培养基,30 ℃、200 r/min,培养过夜,使真菌菌株处于指数生长平台期。①洗菌:将活化好的菌株转移到1.5 ml离心管中,用无菌PBS缓冲液洗3次,再用1 ml PBS重悬。②调节浓度:用RPMI 1640稀释菌液至终浓度为(1~5)×103 CFU/ml。③制备药敏实验板:取96孔板,第1列加入100 μl RPMI 1640液体培养基做空白对照;第12列加入100 μl上述菌液做阳性对照;第2~11列采用倍比稀释的方法制成不同梯度的加药处理菌液,于30 ℃恒温培养过夜,用酶标仪在λ=630 nm测吸光度(A630)值,使A值下降80%以上的对应的药物浓度为MIC80[7]

    • 在N系列化合物中筛选活性较强的化合物N2进行进一步的抗真菌谱测定。菌株活化、菌液浓度调节、药敏反应板制备、测定A值(600 nm)值同上,更换实验室常用的菌株,测定化合物N2对多种真菌的作用,重复上述实验步骤进行实验。

    • 稀释菌液至1×106 CFU/ml,均匀涂布于2个SDA固体培养基上并在2块培养基上分别放置5片小圆纸片。取一块培养基,在5片纸片上分别滴加0、0.25、0.5、1、2 μg N2化合物,另一块按相同方式滴加等量氟康唑。于恒温箱中30 ℃培养24 h后观察并记录2块培养皿上的抑菌圈大小及形态。

    • 生长曲线测定:菌株活化、洗菌步骤同前所述,用YPD培养基稀释菌液至1×106 CFU /ml(A630=0.01)。取3支摇菌管加入相同起始菌液量,并对各管进行加药处理,使3支摇菌管中N2浓度分别为0、2、4 μg/ml。30 ℃、200 r/min振荡培养。分别在0、3、6、9、12、24 h测定各管菌液的A值(630 nm)。以A值(630 nm)值对时间做时间-生长曲线[8]

      杀菌曲线测定:菌株活化、洗菌步骤同前所述,用RPMI 1640培养基稀释菌液至1×103 CFU /ml。取4支摇菌管,各加入1 ml菌液和一定浓度的N2化合物,使4支摇菌管的药物浓度分别为0、2、4、8 μg/ml。30 ℃、200 r/min振荡培养。分别在0、3、6、9、12、24 h取100 μl菌液,用无菌PBS以10倍浓度梯度稀释,各取100 μl涂于SDA固体培养基表面,30 ℃静置培养24 h~48 h后统计培养基内的菌落克隆数。以lgCFU/ml对时间做时间-杀菌曲线[9]

    • N2化合物对于白念珠菌菌丝形成诱导影响:过夜活化的白念珠菌SC5314分别用Spider培养液和RPMI 1640培养液稀释至菌浓度为5×105 CFU/ml,分别加药使N2终浓度为0.5、0.25、0.125 μg/ml。空白对照加入同体积的DMSO,充分混匀,转移至12孔板中,37 ℃,静置培养3 h,倒置显微镜观察菌丝形态。

      XTT法测定N2化合物抗生物被膜形成实验:活化白念珠菌SC5314,离心后去除培养基,用无菌PBS洗菌3次,然后用RPMI 1640液体培养基稀释菌液至1×106 CFU/ml。取TC处理的96孔板制备反应板,37 ℃恒温培养培养30 min,使细胞沉降黏附在孔板底面。然后吸弃上清,用PBS缓冲液洗涤3次。在处理完成的96孔板第一列加入RPMI 1640培养基,第12列加入菌液,第2~11列每2列为一组,分别加入一定量的N2化合物使其浓度为32、16、8、4、2 μg/ml。将96孔板置于恒温培养箱中37 ℃静置培养24 h,随后吸弃上清液并用PBS洗涤3次。之后每孔加入200 μl XTT/Menadione溶液,37 ℃避光孵育3 h。每孔吸取100 μl 上层液体并转移到另一块96孔板对应的位置,用酶标仪测定各孔A值(490 nm)[10-11]

    • 为进一步明确N2化合物对白念珠菌细胞壁和细胞膜的影响,研究设置了2组白念珠菌。一组用2 μg/ml的N2化合物处理,另一组不进行加药处理,作为对照。处理16 h后用2%的戊二醛固定,随后采用透射电镜详细观察2组白念珠菌的形态结构。

    • 在RPMI 1640培养液中,采用临床分离的氟康唑耐药白念珠菌103和538(氟康唑单用时,MIC80>32 μg/ml),考察N系列化合物的抗真菌活性。通过对N系列化合物9种衍生物的体外抗真菌活性研究发现,N系列化合物中N2、N6和N8单用对白念珠菌均有一定的抗真菌活性,而N2化合物的MIC最低,为0.5 μg/ml和1 μg/ml,抗真菌作用显著,这些结果表明吡啶鎓类化合物具有体外抗真菌活性,后续可以通过结构改造进一步获得活性更高的类似物开展深入研究。结果见表1

      表 1  N系列化合物对氟康唑耐药白念珠菌103和538的MIC80

      化合物结构式白念珠菌103 MIC80 (μg/ml)白念珠菌538 MIC80 (μg/ml)
      N1>16>16
      N20.51
      N3>1616
      N4>16>16
      N5>16>16
      N688
      N7>16>16
      N8168
      N9>16>16
    • 通过对N1-N9化合物的初步筛选,发现N2的抗真菌活性最强。因此,我们选定N2进行了抗真菌谱的考察。为探究临床常见致病真菌对N2化合物的敏感性,选用国际标准菌C. albicans SC 5314以及9种氟康唑耐药的白念珠菌(C. albicans 876、C. albicans 311、C. albicans 538、C. albicans 103、C. albicans 911、C. albicans 849、C. albicans 100、C. albicans 32、C. albicans 1010)、隐球菌(Cryptococcus H99、Cryptococcus 32609)、光滑念珠菌C. glabrata 537、热带念珠菌C. tropicalist 293、近平滑念珠菌C. parapsilosis 22019、克柔念珠菌C. krusei 463,用微量液基稀释法测定了这些菌株对应的MIC80值。通过不同菌株对应的MIC80值可以发现,N2化合物对这些临床上常见的致病真菌均起到了明显的抑制作用,结果见表2,这些结果表明吡啶鎓类化合物N2具有广谱的抗真菌活性,对于临床常见的具有致病性的酵母菌均有较强的体外抗真菌活性。

      表 2  N2化合物处理后菌株对应MIC80

      菌株名称
      N2 MIC80(μg/ml)
      C. albicans SC5314 0.5
      C. albicans 876 1.0
      C. albicans 311 0.5
      C. albicans 538 1.0
      C. albicans 103 0.5
      C. albicans 911 0.5
      C. albicans 849 1.0
      C. albicans 100 1.0
      C. albicans 32 0.5
      C. albicans 1010 1.0
      Cryptococcus H99 1.0
      Cryptococcus 30609 2.0
      C. glabrata 537 0.5
      C. tropicalis 293 0.5
      C. parapsilosis 22019 0.5
      C. krusei 463 2.0
    • 通过纸片扩散法,我们以氟康唑为对照探究了N2化合物的抑菌效果。结果显示,相同剂量下,N2化合物和氟康唑均可在培养皿上形成圆形抑菌圈,直径随药量增加而增大。N2化合物处理组抑菌圈内无散在菌落,边界清晰,在培养皿上形成的抑菌圈直径明显大于氟康唑处理组。据此,我们可以认为N2化合物体外抑菌效果优于氟康唑。N2化合物处理组内部无克隆生长提示N2化合物可能具有一定的杀菌能力而不仅仅是抑制作用,结果如图1

      图  1  纸片扩散法抑菌实验单位(m/μg)

    • 为了进一步考察N2对白念珠菌的抑制作用,测定了N2抑制白念珠菌的时间-生长曲线。A值(600 nm)反映了白念珠菌的生长情况,通过不同时间点的测定发现,浓度为2 μg/ml时,N2对白念珠菌的生长增殖有明显的抑制作用(P<0.05),白念珠菌在12 h内,A值(600 nm)的值几乎没有升高,而在24 h时,A值(600 nm)的值仍显著低于未加药组。当N2的浓度增加至4 μg/ml时,白念珠菌在24 h内几乎不能增殖,A值(600 nm)与起始的测定值相当,结果如图2。上述结果表明,化合物N2具有明显的抑制真菌增殖的作用。

      图  2  生长曲线

      为明确化合物N2是否有杀菌功效,我们使用N2化合物处理白念珠菌后,进行涂板培养。测定了0、3、6、9、12、24 h培养基内存活的菌落数。通过测定N2化合物浓度为0、2、4、8 μg/ml时对应的时间-杀菌曲线,发现N2浓度为8 μg/ml时,可以显著降低培养基中白念珠菌的数量,显示出明显的杀菌活性。当N2浓度为2 μg/ml时,白念珠菌3 h时数量减少,而后续数量会增加,提示2 μg/ml 的N2基本不能杀灭培养基中的白念珠菌,结果如图3。上述结果表明,白念珠菌在低浓度时发挥抑菌活性,而当浓度升高时,展现出杀菌活性。

      图  3  杀菌曲线

    • 酵母态向菌丝态的转换是白念珠菌在体内发生侵袭的重要过程。为了考察N2对白念珠菌菌丝形成的抑制作用,我们采用了不同的菌丝诱导模型考察化合物N2对白念珠菌菌丝形成的作用。结果显示,37 ℃条件下,无论在菌丝诱导培养基YPD+FBS%或RPMI 1640培养基中,当N2的浓度高于1 μg/ml时,白念珠菌基本维持在酵母态,菌丝形成被完全抑制,结果如图4。同时,化合物N2的菌丝抑制的浓度与表2中检测的MIC80值相当,这一结果表明,化合物N2在1 μg/ml以上的浓度时,可以同时抑制菌丝形成和白念珠菌增殖。

      图  4  N2处理后白念珠菌菌丝形态

    • 采用XTT法考察了化合物N2对白念珠菌被膜形成的抑制作用。结果显示,在RPMI 1640培养基中,4 μg/ml和8 μg/ml的N2可以抑制约50%的被膜形成,而当浓度继续升高至16 μg/ml或32 μg/ml时,N2对被膜的抑制率到达70%左右,结果如图5。上述结果表明化合物N2可以显著抑制白念珠菌的被膜形成,后续的结构改造和深入研究可以为抗被膜形成药物的研发提供新的方向。

      图  5  N2抑制白念珠菌的生物被膜形成

    • 通过对比N2化合物处理组和对照组白念珠菌的电镜照片,结果如图6,我们发现:N2处理后,白念珠菌的表面绒毛状明显增厚,细胞壁分布不均,细胞膜内层变薄,由此推断可能是几丁质和β-1,3-葡聚糖变少。因此,N2化合物可能主要通过损伤白念珠菌细胞膜和细胞壁发挥杀真菌作用。

      图  6  白念珠菌透射电镜照片

    • 近年来,随着免疫抑制剂的广泛使用、手术介入和免疫缺陷患者的增多,系统性真菌感染的发病率逐年攀升。但抗真菌药物的研发进展缓慢,现有的几类抗真菌药物在长期使用后也逐渐出现了耐药性。为解决临床真菌感染的问题,研发新的抗真菌药物意义重大。本课题组长期致力于抗真菌化合物的筛选和机制研究,前期在基于破坏真菌线粒体功能的研究中发现,亲脂性吡啶鎓盐具有较好的线粒体靶向性和抗真菌活性,因此课题组拓展了化合物的结构类型,本研究中考察了亲脂性吡啶鎓盐的作用。通过体外MIC测定和抗菌谱筛选发现了3个具有抗真菌活性的化合物N2、N6和N8,其中N2结构中含有2个叔丁基的苯环结构,N6含有一个长饱和碳链,均增加了吡啶鎓盐的亲脂性,这些亲脂性基团可能有利于增强吡啶鎓盐的抗真菌活性。后续可以根据上述结构,开展进一步的结构改造。研究前期通过体外筛选结果表明,N2化合物具有体外抗真菌活性较高和抗真菌谱广泛的特点,对包括部分氟康唑耐药菌在内的临床常见致病念珠菌和隐球菌均有一定的抑制作用。尤其是对临床上造成感染问题最为严重的白念珠菌,N2化合物展现出较强的抗菌效果,能够高效地抑制和杀伤白念珠菌。而杀真菌药物是近年来研究的重要方向,通过杀菌活性将体内的念珠菌彻底清除,可以减少念珠菌感染的复发问题,缩短真菌感染的治疗周期。

      本研究有望为抗真菌药物研发提供新的思路,但目前涉及的机制研究尚不深入,后续将基于吡啶鎓盐的线粒体靶向性,考察其对线粒体的形态、膜电位、线粒体DNA和线粒体能量代谢的影响,进一步明确该类化合物的作用机制,为后续的结构改造和靶点研究提供理论支撑。

参考文献 (11)

目录

/

返回文章
返回