留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

信号转导和转录激活因子3在肝病中的研究进展

李婷婷 张俊平

王晓丹, 马骁龙, 董文星. 乌司他丁对感染性休克患者炎症反应、血流动力学、PaO2/FiO2及预后的影响[J]. 药学实践与服务, 2022, 40(6): 576-579. doi: 10.12206/j.issn.2097-2024.202206091
引用本文: 李婷婷, 张俊平. 信号转导和转录激活因子3在肝病中的研究进展[J]. 药学实践与服务, 2022, 40(3): 208-212, 280. doi: 10.12206/j.issn.1006-0111.202109072
WANG Xiaodan, MA Xiaolong, DONG Wenxing. Effects of Ulinastatin on inflammatory response, hemodynamics, PaO2/FiO2 and prognosis in patients with septic shock[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(6): 576-579. doi: 10.12206/j.issn.2097-2024.202206091
Citation: LI Tingting, ZHANG Junping. Research progress of STAT3 on liver disease[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 208-212, 280. doi: 10.12206/j.issn.1006-0111.202109072

信号转导和转录激活因子3在肝病中的研究进展

doi: 10.12206/j.issn.1006-0111.202109072
基金项目: 福建中医药大学高层次人才科研启动资金项目(X2019005)
详细信息
    作者简介:

    李婷婷,硕士研究生,研究方向:中药药理与毒理,Tel:15750846627,Email:1124450656@qq.com

    通讯作者: 张俊平,博士生导师,教授,研究方向:中药药理与毒理,Tel:13916104193,Email:jpzhang08@163.com
  • 中图分类号: R575

Research progress of STAT3 on liver disease

  • 摘要: 信号转导和转录激活因子3(STAT3)是一种重要的转录因子,可被多种细胞因子和生长因子激活,在细胞生长、增殖和分化中发挥关键作用。研究表明,几乎所有的人类肝脏疾病和肝损伤动物模型中均存在STAT3过度激活的现象。通过抑制STAT3的激活可治疗急性肝损伤和肝纤维化,故STAT3抑制剂具有预防和治疗肝脏疾病的潜力。针对STAT3在肝损伤、肝炎、肝再生、肝纤维化和肝癌发生方面的研究进展作一综述。
  • 感染性休克是由感染和脓毒症逐渐发展所致宿主反应失调以及多器官功能障碍,因此又称脓毒性休克,常见于长期慢性病或大型手术之后,基本病理生理改变为感染引起全身性炎症反应,并造成血管内皮细胞损伤和通透性改变,进而引起微循环障碍,导致各器官组织水肿和损伤,因此感染性休克在常规抗感染、补充血容量及保护脏器功能等治疗基础上还需积极改善微循环,维持血流动力学稳定[1-2]。文献报道显示乌司他丁用于感染性休克治疗在抗炎、免疫调节以及重要脏器保护方面均具有积极作用,可明显改善复苏质量和预后[3]。本文主要研究乌司他丁对感染性休克患者炎症反应、血流动力学参数、PaO2/FiO2和预后的影响,旨在进一步探讨其药理作用及相关机制,为推广其在感染性休克治疗中的应用提供参考依据。

    选取2017年1月至2019年12月我院感染性休克患者临床资料127例进行回顾性分析,根据治疗中是否应用乌司他丁分为观察组和常规组,观察组73例,男性38例、女性35例,年龄47~68岁,平均(58.13±7.94)岁,体质量指数(BMI)19.7~30.4 kg/m2,平均(25.31±2.87) kg/m2,其中重症肺炎23例、急性腹膜炎16例、急性胰腺炎15例、胆道感染9例、其他10例;常规组54例,男性29例、女性25例,年龄43~67岁,平均(56.92±8.36)岁,BMI 20.3~29.8 kg/m2,平均(25.06±2.74) kg/m2,其中重症肺炎18例、急性腹膜炎14例、急性胰腺炎9例、胆道感染7例、其他6例;两组临床基本资料差异均无统计学意义(P>0.05)。纳入标准:①符合美国胸科医师协会(ACCP)/欧洲危重病医学会(SCCM)联合制定的诊断标准 ;②年龄≤70岁;③临床相关资料保存完整;④患者及家属知晓本研究并签署同意书。排除标准:①入院时已发生脏器功能障碍或衰竭者;②伴其他致死性疾病或严重创伤;③伴精神疾病或神经系统病变;④伴免疫功能障碍或此前1月内应用激素或免疫调节治疗者;⑤未遵医嘱完成治疗或随访。

    两组入院后均按感染性休克相关指南[4]常规进行抗感染和抗休克治疗,包括补液、给氧及营养管理等对症支持治疗,并应用血管活性药物改善血管功能和微循环障碍,同时密切监测和保护重要脏器功能;观察组在此基础上加用乌司他丁注射液(国药准字H19990134,10万U,广东天普生化医药股份有限公司)+0.9%生理盐水100 ml静脉滴注10万U/次,2次/d,连续用药7 d。

    ①炎症因子:采集两组患者治疗前和治疗7 d时外周静脉血3 ml,采用ELISA法(试剂盒购自上海晶美生物技术有限公司)检测白介素-6(IL-6)和肿瘤坏死因子α(TNF-α)水平;采用电化学发光法检测降钙素原(PCT)水平,所有操作均严格按照说明书要求完成。②血流动力学参数:左锁骨下静脉和股动脉置管并连接PiCCO监护仪,监测两组患者治疗期间平均动脉压(MAP)、心脏指数(CI)、血管外肺水指数(EVLWI)及外周血管阻力指数(SVRI)等指标变化情况。③组织灌注水平:分别于两组治疗前和治疗7 d时行动脉血气分析监测动脉血氧分压(PaO2)、二氧化碳分压(PaCO2)并计算氧合指数(PaO2/FiO2)。④患者恢复情况:比较两组治疗7 d时APACHE-Ⅱ评分变化,并观察两组机械通气时间、ICU住院时间以及器官功能障碍综合征(MODS)和死亡发生率。

    数据分析采用SPSS19.0软件,计数资料以率(%)表示,采用χ2检验或Fisher精确概率法,计量资料以($\bar x$±s)表示,两组间比较采用独立样本t检验,两组治疗前后比较行重复测量方差分析,有统计学意义者采用SNK-q检验进行两两比较,以P<0.05为差异有统计学意义。

    治疗7 d时,两组IL-6、TNF-α及PCT水平均明显降低(P<0.05),且观察组IL-6、TNF-α及PCT水平低于常规组,差异有统计学意义(P<0.05),见表1

    表  1  两组治疗前后感染标志物变化
    组别例数(nIL-6(ng/L)TNF-α(μg/L)PCT(μg/L)
    治疗前治疗7 d治疗前治疗7 d治疗前治疗7 d
    观察组73213.76±40.92143.58±26.45*6.02±1.282.16±0.47*3.94±0.821.25±0.31*
    常规组54209.53±41.27164.05±29.145.89±1.242.73±0.514.06±0.791.68±0.42
    t0.5333.8290.5326.0440.7696.152
    P0.595<0.0010.596<0.0010.444<0.001
    *P<0.05,与同组治疗前比较。
    下载: 导出CSV 
    | 显示表格

    治疗12 h、24 h和72 h时,两组MAP和CI明显升高(P<0.05),EVLWI和SVRI明显降低(P<0.05),且同一时间观察组MAP高于常规组,EVLWI低于常规组,差异均有统计学意义(P<0.05),见表2

    表  2  两组治疗前后血流动力学参数变化
    组别时间MAP(mmHg)CI
    [L/(min·m2)]
    EVLWI(ml/kg)SVRI
    (kPa·s/m3)
    观察组治疗前58.72±10.943.84±0.7110.63±1.292491.85±387.46
    治疗12 h70.38±9.65*▲4.32±0.56*8.15±1.07*▲2014.39±362.71*
    治疗24 h83.29±8.53*#▲4.68±0.49*#7.24±0.86*#▲1746.50±329.08*#
    治疗72 h92.16±7.82*#△▲4.93±0.54*#△6.32±0.73*#△▲1502.63±312.79*#△
    常规组治疗前59.34±10.683.75±0.6710.48±1.342513.42±385.94
    治疗12 h65.47±10.93*4.19±0.60*8.56±1.09*2030.78±364.56*
    治疗24 h76.15±9.52*#4.53±0.58*#7.82±0.91*#1754.35±326.81*#
    治疗72 h84.36±9.08*#△4.85±0.52*#△6.74±0.78*#△1523.86±314.07*#△
    统计值F组间/P组间2.791/0.0261.028/0.3723.829/<0.0010.914/0.423
    F组内/P组内106.354/85.143/<0.00176.451/<0.00182.065/<0.001
    F交互/P交互8.462/<0.0012.396/0.1074.236/<0.0012.137/0.149
    *P<0.05,与同组治疗前比较;#P<0.05,与同组治疗12 h比较;P<0.05,与同组治疗24 h比较;P<0.05,与常规组比较。
    下载: 导出CSV 
    | 显示表格

    治疗12、24、72 h时,两组PaO2/FiO2明显升高(P<0.05),且同一时间观察组PaO2/FiO2高于常规组,差异有统计学意义(P<0.05),见表3

    表  3  两组治疗期间PaO2/FiO2变化情况
    组别例数(n治疗前治疗12 h治疗24 h治疗72 h
    观察组7371.98±6.4579.53±5.26*▲87.45±5.08*#▲92.64±4.13*#△▲
    常规组5472.36±6.2976.04±5.82*83.92±5.37*#89.21±4.75*#△
    t0.3083.2763.5054.024
    P0.7590.002<0.001<0.001
    F组间/P组间=2.584/0.039;F组内/P组内=21.462/<0.001;F交互/P交互=3.029/0.005;*P<0.05,与同组治疗前比较;#P<0.05,与同组治疗12 h比较;P<0.05,与同组治疗24 h比较;P<0.05,与常规组比较。
    下载: 导出CSV 
    | 显示表格

    治疗7 d时,两组APACHE-Ⅱ评分明显降低(P<0.05),且观察组APACHE-Ⅱ评分、机械通气时间及ICU住院时间均低于常规组,差异有统计学意义(P<0.05)。

    观察组和常规组多器官功能障碍综合征(MODS)发生率分别为4.11%和14.81%(P<0.05),病死率分别为1.37%和7.41%(P>0.05)。

    严重感染患者细菌及毒素入血导致大量炎性细胞激活和炎症介质释放,造成级联失控的免疫反应并引起各器官和系统灌注和代谢障碍,导致MODS发生甚至威胁患者生命安全[5]。感染性休克病情进展较快且诊疗难度大,预后情况目前仍不容乐观,文献报道患者病死率可达50%以上,且救治成功的患者也可能长期存在器官功能不全等问题,给患者、家庭和社会带来沉重负担,因此提升临床诊治水平势在必行,而微循环障碍是感染性休克核心环节,与患者预后情况关系密切,是现阶段国内外重点研究方向。

    既往研究认为严重感染尤其是G菌患者有较高风险发生感染性休克,因此检测炎症因子表达水平可反映病情严重程度。本研究结果显示,两组治疗前IL-6、TNF-α及PCT水平显著升高,其中IL-6可参与机体免疫反应并促进淋巴细胞增殖和分化;TNF-α是常见促炎因子,能进一步诱导炎症介质大量释放;PCT可准确反映机体炎症反应水平,在细菌或真菌等感染后明显升高。本研究中治疗第7天时两组IL-6、TNF-α及PCT水平均大幅度降低,且观察组降低效果更为显著,表明乌司他丁辅助治疗感染性休克有利于降低血清炎症因子水平,具有良好控制感染和炎症反应效果(见表4),与王东等[6]研究结果相一致。乌司他丁是分布于人体血液、尿液或脑脊液中的Kunitz型胰蛋白酶抑制剂,可同时抑制多种水解酶活性并限制炎症介质释放,在机体受到感染后可快速进入炎症反应进程,近年来作为抗炎因子广泛用于胰腺炎、关节炎及脓毒症等病变治疗,以补充人体内源性乌司他丁消耗,有助于快速缓解症状[7]

    表  4  两组治疗后恢复情况
    分组例数(nAPACHE-Ⅱ评分(分)机械通气
    时间(d)
    ICU住院
    时间(d)
    治疗前治疗7 d
    观察组7323.09±4.7610.65±1.94*5.06±1.425.47±1.28
    常规组5421.87±5.0212.58±2.43*5.81±1.546.25±1.45
    T1.2944.6112.6332.975
    P0.199<0.0010.0100.004
    *P<0.05,与同组治疗前比较。
    下载: 导出CSV 
    | 显示表格

    2016年ACCP/SCCM感染性休克最新定义强调了微循环和细胞代谢障碍的重要性,要求在治疗过程中积极改善微循环功能。感染性休克血流动力学发生改变的基础为外周血管收缩功能异常,继而引起血管扩张和通透性改变,造成顽固性低血容量状态,且由于炎症反应和心肌细胞损伤,心输出量进一步下降,导致组织灌注不足和血流量重新分配,严重时可引起MODS发生。因此,感染性休克治疗期间常采用PiCCO严密监测心功能和外周循环状态,为评估病情和指导治疗提供参考依据[8]。明自强等[9]研究认为,乌司他丁对胆道感染性休克患者血流动力学参数具有明显改善效果,有利于患者病情好转,但乌司他丁对循环系统的作用机制目前尚未清楚,文献报道可能与抑制炎症因子释放和脂质过氧化[10]、清除氧自由基以及减轻内皮细胞损伤等作用有关。本研究结果显示,两组患者经过积极干预后MAP、CI和PaO2/FiO2均明显升高且EVLWI和SVRI明显降低,表明患者微循环状态和组织灌注水平获得改善,其中观察组各项指标改善效果存在较大优势,提示采用乌司他丁辅助治疗感染性休克可促进微循环改善,有助于恢复各器官系统血流量,为改善预后创造有利条件。本研究中观察组治疗7 d时APACHE-Ⅱ评分、机械通气时间、ICU住院时间及MODS发生率均明显低于常规组,表明乌司他丁治疗感染性休克可提升患者康复速度,这与其抑制炎症反应和改善微循环的功能均有密切联系,同时本研究显示观察组患者死亡率较低,但与常规组比较未见明显差异,不同于方向明等[11]报道结果,其原因可能与不同研究样本类型和医疗条件等均存在一定差异有关,也可能是本研究样本容量偏小所致,具体情况还需更多研究进行证实。

    综上所述,乌司他丁治疗感染性休克有利于减轻炎症反应,改善血流动力学指标和微循环灌注,对促进患者康复和改善预后具有积极作用。

  • [1] GAO B, JEONG W I, TIAN Z. Liver: An organ with predominant innate immunity[J]. Hepatology,2008,47(2):729-736.
    [2] DOHERTY D G. Immunity, tolerance and autoimmunity in the liver: A comprehensive review[J]. J Autoimmun,2016,66:60-75. doi:  10.1016/j.jaut.2015.08.020
    [3] GAO B. Cytokines, STATs and liver disease[J]. Cell Mol Immunol,2005,2(2):92-100.
    [4] ZHAO J, QI Y F, YU Y R. STAT3: A key regulator in liver fibrosis[J]. Ann Hepatol,2021,21:100224. doi:  10.1016/j.aohep.2020.06.010
    [5] CHUN J, PARK M K, KO H, et al. Bioassay-guided isolation of cantharidin from blister beetles and its anticancer activity through inhibition of epidermal growth factor receptor-mediated STAT3 and Akt pathways[J]. J Nat Med,2018,72(4):937-945. doi:  10.1007/s11418-018-1226-6
    [6] ITSUJI T, TONOMURA H, ISHIBASHI H, et al. Hepatocyte growth factor regulates HIF-1α-induced nucleus pulposus cell proliferation through MAPK-, PI3K/Akt-, and STAT3-mediated signaling[J]. J Orthop Res,2021,39(6):1184-1191. doi:  10.1002/jor.24679
    [7] KAWARATANI H, MORIYA K, NAMISAKI T, et al. Therapeutic strategies for alcoholic liver disease: Focusing on inflammation and fibrosis (Review)[J]. Int J Mol Med,2017,40(2):263-270. doi:  10.3892/ijmm.2017.3015
    [8] LIU J, YU Q, WU W, et al. TLR2 Stimulation Strengthens Intrahepatic Myeloid-Derived Cell-Mediated T Cell Tolerance through Inducing Kupffer Cell Expansion and IL-10 Production[J]. J Immunol,2018,200(7):2341-2351. doi:  10.4049/jimmunol.1700540
    [9] ZHANG M, XU S, HAN Y, et al. Apoptotic cells attenuate fulminant hepatitis by priming Kupffer cells to produce interleukin-10 through membrane-bound TGF-β[J]. Hepatology,2011,53(1):306-316. doi:  10.1002/hep.24029
    [10] KNOLLE P A, LöSER E, PROTZER U, et al. Regulation of endotoxin-induced IL-6 production in liver sinusoidal endothelial cells and Kupffer cells by IL-10[J]. Clin Exp Immunol,1997,107(3):555-561.
    [11] FRIEDMAN S L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[J]. Physiol Rev,2008,88(1):125-172. doi:  10.1152/physrev.00013.2007
    [12] ZHANG W Q, GU G X, XIA Q. [Interactions between transforming growth factor beta and signal transducer and activator of transcription 3 in the development of liver fibrosis][J]. Zhonghua Gan Zang Bing Za Zhi,2018,26(10):792-796.
    [13] IWAHASI S, RUI F, MORINE Y, et al. Hepatic Stellate Cells Contribute to the Tumor Malignancy of Hepatocellular Carcinoma Through the IL-6 Pathway[J]. Anticancer Res,2020,40(2):743-749. doi:  10.21873/anticanres.14005
    [14] POISSON J, LEMOINNE S, BOULANGER C, et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases[J]. J Hepatol,2017,66(1):212-227. doi:  10.1016/j.jhep.2016.07.009
    [15] LI Z, CHEN B, DONG W, et al. MKL1 promotes endothelial-to-mesenchymal transition and liver fibrosis by activating TWIST1 transcription[J]. Cell Death Dis,2019,10(12):899. doi:  10.1038/s41419-019-2101-4
    [16] PARK O, WANG H, WENG H, et al. In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease progression[J]. Hepatology,2011,54(1):252-261. doi:  10.1002/hep.24339
    [17] XIANG X, FENG D, HWANG S, et al. Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice[J]. J Hepatol,2020,72(4):736-745. doi:  10.1016/j.jhep.2019.11.013
    [18] LAM S P, LUK J M, MAN K, et al. Activation of interleukin-6-induced glycoprotein 130/signal transducer and activator of transcription 3 pathway in mesenchymal stem cells enhances hepatic differentiation, proliferation, and liver regeneration[J]. Liver Transpl,2010,16(10):1195-1206. doi:  10.1002/lt.22136
    [19] STREETZ K L, TACKE F, LEIFELD L, et al. Interleukin 6/gp130-dependent pathways are protective during chronic liver diseases[J]. Hepatology,2003,38(1):218-229. doi:  10.1053/jhep.2003.50268
    [20] KROY D C, BERAZA N, TSCHAHARGANEH D F, et al. Lack of interleukin-6/glycoprotein 130/signal transducers and activators of transcription-3 signaling in hepatocytes predisposes to liver steatosis and injury in mice[J]. Hepatology,2010,51(2):463-473. doi:  10.1002/hep.23322
    [21] LIU E H, ZHENG Z N, XIAO C X, et al. IL-22 relieves sepsis-induced liver injury via activating JAK/STAT3 signaling pathway[J]. J Biol Regul Homeost Agents,2020,34(5):1719-1727.
    [22] HORIGUCHI N, WANG L, MUKHOPADHYAY P, et al. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury[J]. Gastroenterology,2008,134(4):1148-1158. doi:  10.1053/j.gastro.2008.01.016
    [23] SAKAMORI R, TAKEHARA T, OHNISHI C, et al. Signal transducer and activator of transcription 3 signaling within hepatocytes attenuates systemic inflammatory response and lethality in septic mice[J]. Hepatology,2007,46(5):1564-1573. doi:  10.1002/hep.21837
    [24] MATSUKAWA A, TAKEDA K, KUDO S, et al. Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils[J]. J Immunol,2003,171(11):6198-6205. doi:  10.4049/jimmunol.171.11.6198
    [25] LAFDIL F, WANG H, PARK O, et al. Myeloid STAT3 inhibits T cell-mediated hepatitis by regulating T helper 1 cytokine and interleukin-17 production[J]. Gastroenterology,2009,137(6):2125-2135.e1-2. doi:  10.1053/j.gastro.2009.08.004
    [26] LI N, HUA J. Immune cells in liver regeneration[J]. Oncotarget,2017,8(2):3628-3639. doi:  10.18632/oncotarget.12275
    [27] KHAN H A, AHMAD M Z, KHAN J A, et al. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance[J]. Hepatobiliary Pancreat Dis Int,2017,16(3):245-256. doi:  10.1016/S1499-3872(17)60014-6
    [28] YIN S, WANG H, PARK O, et al. Enhanced liver regeneration in IL-10-deficient mice after partial hepatectomy via stimulating inflammatory response and activating hepatocyte STAT3[J]. Am J Pathol,2011,178(4):1614-1621. doi:  10.1016/j.ajpath.2011.01.001
    [29] YAMADA Y, KIRILLOVA I, PESCHON J J, et al. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor[J]. Proc Natl Acad Sci U S A,1997,94(4):1441-1446. doi:  10.1073/pnas.94.4.1441
    [30] CRESSMAN D E, GREENBAUM L E, DEANGELIS R A, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice[J]. Science,1996,274(5291):1379-1383. doi:  10.1126/science.274.5291.1379
    [31] ZHANG Y M, LIU Z R, CUI Z L, et al. Interleukin-22 contributes to liver regeneration in mice with concanavalin A-induced hepatitis after hepatectomy[J]. World J Gastroenterol,2016,22(6):2081-2091. doi:  10.3748/wjg.v22.i6.2081
    [32] BATALLER R, BRENNER D A. Liver fibrosis[J]. J Clin Invest,2005,115(2):209-218. doi:  10.1172/JCI24282
    [33] AYDıN M M, AKçALı K C. Liver fibrosis[J]. Turk J Gastroenterol,2018,29(1):14-21. doi:  10.5152/tjg.2018.17330
    [34] FRIEDMAN S L. Mechanisms of hepatic fibrogenesis[J]. Gastroenterology,2008,134(6):1655-1669. doi:  10.1053/j.gastro.2008.03.003
    [35] KOVALOVICH K, DEANGELIS R A, LI W, et al. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice[J]. Hepatology,2000,31(1):149-159. doi:  10.1002/hep.510310123
    [36] HOU X, YIN S, REN R, et al. Myeloid-Cell-Specific IL-6 Signaling Promotes MicroRNA-223-Enriched Exosome Production to Attenuate NAFLD-Associated Fibrosis[J]. Hepatology,2021,74(1):116-132. doi:  10.1002/hep.31658
    [37] MAIR M, ZOLLNER G, SCHNELLER D, et al. Signal transducer and activator of transcription 3 protects from liver injury and fibrosis in a mouse model of sclerosing cholangitis[J]. Gastroenterology,2010,138(7):2499-2508. doi:  10.1053/j.gastro.2010.02.049
    [38] LI H G, YOU P T, XIA Y, et al. Yu Gan Long Ameliorates Hepatic Fibrosis by Inhibiting PI3K/AKT, Ras/ERK and JAK1/STAT3 Signaling Pathways in CCl4-induced Liver Fibrosis Rats[J]. Curr Med Sci,2020,40(3):539-547. doi:  10.1007/s11596-020-2211-3
    [39] SU T H, SHIAU C W, JAO P, et al. Sorafenib and its derivative SC-1 exhibit antifibrotic effects through signal transducer and activator of transcription 3 inhibition[J]. Proc Natl Acad Sci U S A,2015,112(23):7243-7248. doi:  10.1073/pnas.1507499112
    [40] ZIMMERS T A, FISHEL M L, BONETTO A. STAT3 in the systemic inflammation of cancer cachexia[J]. Semin Cell Dev Biol,2016,54:28-41. doi:  10.1016/j.semcdb.2016.02.009
    [41] WANG Y, SHEN Y, WANG S, et al. The role of STAT3 in leading the crosstalk between human cancers and the immune system[J]. Cancer Lett,2018,415:117-128. doi:  10.1016/j.canlet.2017.12.003
    [42] VILLANUEVA A. Hepatocellular Carcinoma[J]. N Engl J Med,2019,380(15):1450-1462. doi:  10.1056/NEJMra1713263
    [43] YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol,2019,16(10):589-604. doi:  10.1038/s41575-019-0186-y
    [44] ABIRU S, MIGITA K, MAEDA Y, et al. Serum cytokine and soluble cytokine receptor levels in patients with non-alcoholic steatohepatitis[J]. Liver Int,2006,26(1):39-45. doi:  10.1111/j.1478-3231.2005.01191.x
    [45] NAUGLER W E, SAKURAI T, KIM S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production[J]. Science,2007,317(5834):121-124. doi:  10.1126/science.1140485
    [46] ZUO M, LI C, LIN J, et al. LLL12, a novel small inhibitor targeting STAT3 for hepatocellular carcinoma therapy[J]. Oncotarget,2015,6(13):10940-10949. doi:  10.18632/oncotarget.3458
    [47] WANG B, LIU T, WU J C, et al. STAT3 aggravates TGF-β1-induced hepatic epithelial-to-mesenchymal transition and migration[J]. Biomed Pharmacother,2018,98:214-221. doi:  10.1016/j.biopha.2017.12.035
    [48] YANG S F, WANG S N, WU C F, et al. Altered p-STAT3 (tyr705) expression is associated with histological grading and intratumour microvessel density in hepatocellular carcinoma[J]. J Clin Pathol,2007,60(6):642-648. doi:  10.1136/jcp.2006.036970
    [49] JIANG L H, HAO Y L, ZHU J W. Expression and prognostic value of HER-2/neu, STAT3 and SOCS3 in hepatocellular carcinoma[J]. Clin Res Hepatol Gastroenterol,2019,43(3):282-291. doi:  10.1016/j.clinre.2018.09.011
    [50] FORNER A, REIG M, BRUIX J. Hepatocellular carcinoma[J]. Lancet,2018,391(10127):1301-1314. doi:  10.1016/S0140-6736(18)30010-2
    [51] KUDO M, FINN R S, QIN S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. Lancet,2018,391(10126):1163-1173. doi:  10.1016/S0140-6736(18)30207-1
    [52] JUNG K H, YOO W, STEVENSON H L, et al. Multifunctional Effects of a Small-Molecule STAT3 Inhibitor on NASH and Hepatocellular Carcinoma in Mice[J]. Clin Cancer Res,2017,23(18):5537-5546. doi:  10.1158/1078-0432.CCR-16-2253
  • [1] 张俊丽, 李媛媛, 尹静, 杨鸿源, 白耀武.  咪达唑仑调节PINK1/PARKIN信号通路对缺血性脑卒中大鼠神经元损伤的影响 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202405024
    [2] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架治疗创伤性脑损伤的研究 . 药学实践与服务, 2025, 43(2): 67-74. doi: 10.12206/j.issn.2097-2024.202406034
    [3] 段禹, 刘爱军.  活血化瘀法治疗血管性痴呆的研究进展 . 药学实践与服务, 2025, 43(4): 151-155, 173. doi: 10.12206/j.issn.2097-2024.202408045
    [4] 竺东杰, 贺新征, 邹杰, 余史丹, 李红霞.  雷公藤甲素对大鼠脑缺血再灌注损伤的影响及机制研究 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202311021
    [5] 冯一帆, 严啸东, 张文彬, 李炳锋, 郭美丽.  菸花苷长期给药对脑缺血再灌注损伤大鼠神经功能的影响 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202407038
    [6] 李想, 陆鸿远, 张明玉, 高欢, 姚东, 许子华.  米格列醇激活UCP1介导棕色脂肪改善冷暴露小鼠损伤的研究 . 药学实践与服务, 2025, 43(1): 1-5, 16. doi: 10.12206/j.issn.2097-2024.202404005
    [7] 张紫璇, 高苑, 张利, 李佳莉, 徐希科, 祖先鹏.  中药防治急性肺损伤的活性成分及其作用机制研究进展 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202404079
    [8] 冯婷婷, 张景翔, 王彦, 许维恒, 张俊平.  ANXA3基因及蛋白的研究进展 . 药学实践与服务, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
    [9] 徐尧, 马春辉, 李志勇.  高血压对心血管纤维化及sFRP2表达的影响 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202409055
    [10] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [11] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [12] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [13] 邹思, 吴岩斌, 吴锦忠, 吴建国, 黄家兴.  虎奶菇菌核多糖功能化纳米硒抗疲劳功效研究 . 药学实践与服务, 2024, 42(10): 426-432. doi: 10.12206/j.issn.2097-2024.202206072
    [14] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [15] 杨嘉宁, 赵一颖, 肖伟.  七味脂肝方对非酒精性脂肪性肝炎动物模型的药效学评价 . 药学实践与服务, 2024, 42(9): 389-398. doi: 10.12206/j.issn.2097-2024.202404096
    [16] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [17] 何亚伦, 祁智, 常杰.  消胀通便膏在晚期肝癌患者阿片类药物相关性便秘中的应用研究 . 药学实践与服务, 2024, 42(12): 520-523. doi: 10.12206/j.issn.2097-2024.202309009
    [18] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [19] 杨念, 张博乐, 张俊霞, 张振强.  一种中药组合物对ANIT诱导的小鼠胆汁淤积肝损伤的保护作用研究 . 药学实践与服务, 2024, 42(12): 508-511, 519. doi: 10.12206/j.issn.2097-2024.202305008
  • 期刊类型引用(2)

    1. 耿帅,关鑫,史宁,郭宏举,常李荣. 应急药品保障的模块化与信息化建设的研究进展. 中国医药导报. 2023(04): 39-42 . 百度学术
    2. 杜明华,张丽萍,惠慧,张恒,齐鹏,任学文,朱海燕. 野战医疗队夏季野外驻训疾病谱及常用药物分析. 中华急诊医学杂志. 2023(06): 806-810 . 百度学术

    其他类型引用(0)

  • 加载中
计量
  • 文章访问数:  7501
  • HTML全文浏览量:  3064
  • PDF下载量:  63
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2022-04-14
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2022-05-25

信号转导和转录激活因子3在肝病中的研究进展

doi: 10.12206/j.issn.1006-0111.202109072
    基金项目:  福建中医药大学高层次人才科研启动资金项目(X2019005)
    作者简介:

    李婷婷,硕士研究生,研究方向:中药药理与毒理,Tel:15750846627,Email:1124450656@qq.com

    通讯作者: 张俊平,博士生导师,教授,研究方向:中药药理与毒理,Tel:13916104193,Email:jpzhang08@163.com
  • 中图分类号: R575

摘要: 信号转导和转录激活因子3(STAT3)是一种重要的转录因子,可被多种细胞因子和生长因子激活,在细胞生长、增殖和分化中发挥关键作用。研究表明,几乎所有的人类肝脏疾病和肝损伤动物模型中均存在STAT3过度激活的现象。通过抑制STAT3的激活可治疗急性肝损伤和肝纤维化,故STAT3抑制剂具有预防和治疗肝脏疾病的潜力。针对STAT3在肝损伤、肝炎、肝再生、肝纤维化和肝癌发生方面的研究进展作一综述。

English Abstract

王晓丹, 马骁龙, 董文星. 乌司他丁对感染性休克患者炎症反应、血流动力学、PaO2/FiO2及预后的影响[J]. 药学实践与服务, 2022, 40(6): 576-579. doi: 10.12206/j.issn.2097-2024.202206091
引用本文: 李婷婷, 张俊平. 信号转导和转录激活因子3在肝病中的研究进展[J]. 药学实践与服务, 2022, 40(3): 208-212, 280. doi: 10.12206/j.issn.1006-0111.202109072
WANG Xiaodan, MA Xiaolong, DONG Wenxing. Effects of Ulinastatin on inflammatory response, hemodynamics, PaO2/FiO2 and prognosis in patients with septic shock[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(6): 576-579. doi: 10.12206/j.issn.2097-2024.202206091
Citation: LI Tingting, ZHANG Junping. Research progress of STAT3 on liver disease[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 208-212, 280. doi: 10.12206/j.issn.1006-0111.202109072
  • 肝脏是人体内重要的实质器官,在新陈代谢、排毒和天然免疫中发挥关键作用[1-2]。酒精、药物、病毒等是肝损伤的暴露因素,在这些损伤因素的作用下,肝细胞易发生坏死进而导致肝损伤。肝损伤过程中会引发炎症,持续的肝脏炎症将导致肝纤维化,肝纤维化的持续发展将转变为肝硬化,甚至发展为肝癌。信号转导和转录激活因子3(signal transduction and transcriptional activator 3,STAT3)是体内重要的转录因子,在细胞生长、增殖和分化等生物过程中发挥关键作用。研究发现,STAT3的激活与肝损伤、炎症、肝再生、肝纤维化甚至肝癌密切相关。本文综述了STAT3在不同肝病中的研究进展,并讨论了STAT3抑制剂在治疗肝病中的潜在应用前景。

    • 肝脏由实质细胞和非实质细胞组成。实质细胞即肝实质细胞,又称肝细胞;非实质细胞包括枯否细胞(Kupffer cell,KC)、肝星状细胞(hepatic stellate cell,HSC)、肝窦内皮细胞(hepatic sinusoidal endothelial cell,HSEC)和其他免疫细胞(B细胞、T细胞、自然杀伤细胞、树突状细胞)等。

    • 肝细胞的增殖和生长主要受STAT3调控,白细胞介素-6(IL-6)及其家族成员(包括白血病抑制因子、睫状神经营养因子、抑癌蛋白M、心肌营养素1和IL-11、IL-22等细胞因子均可激活STAT3[3]。STAT3被激活时其705位酪氨酸残基(Tyr-705)发生磷酸化,磷酸化的STAT3形成二聚体,并易位到细胞核中激活多种靶基因的转录,促进肝细胞存活和肝脏再生[4]。此外,肝细胞生长因子(HGF)和表皮生长因子(EGF)也可少量激活肝细胞中的STAT3信号[5-6]

    • KC是肝常驻巨噬细胞,占肝脏中单核巨噬细胞的80%至90%。KC不仅是促炎细胞因子IL-6的主要来源,也是抗炎细胞因子IL-10的主要来源,而且KC还可以响应IL-6和IL-10的刺激 [7-8]。IL-6和IL-10能够激活巨噬细胞内STAT3,发挥截然相反的功能。IL-10激活细胞内STAT3可抑制脂多糖(LPS)诱导的炎症应答,而IL-6激活STAT3则促进巨噬细胞炎症应答。因此,KC广泛参与肝脏炎症反应,在不同病理条件下发挥不同作用[9-10]

      HSC位于窦周隙内(内皮细胞和肝细胞之间的小区域),储存并供应身体所需75%的维生素A[11]。在肝纤维化病理过程中,STAT3在肝星状细胞的增殖和激活中起关键作用[12]。IL-6可激活HSC中的STAT3,促进其存活和增殖,当HSC激活后,会产生大量胶原,促进肝纤维化形成[13]

      HSEC位于肝窦腔与肝细胞之间,它能够维持肝星状细胞的静息状态,从而抑制肝内血管收缩和肝纤维化的发展[14]。通过内皮间质转化(EndMT),HSEC能够转化为活化的肌成纤维细胞并促进肝纤维化发生,而抑制STAT3能够减轻肝窦内皮细胞中的EndMT,并改善胆管结扎(BDL)诱导的小鼠肝纤维化,表明HSEC内STAT3信号在肝纤维化中同样发挥重要作用[15]

    • 大量研究表明,在许多啮齿类动物模型中,IL-6、IL-6家族细胞因子以及IL-22对肝损伤均具有保护作用。IL-22肝脏过表达转基因小鼠可完全抵御T细胞免疫性肝炎对肝细胞的损伤。破坏IL-6/gp130、OSM、IL-22基因或肝细胞内STAT3,能够增加绝大多数动物模型肝损伤的易感性[3]。这些研究表明STAT3在肝细胞损伤保护方面具有积极作用。与肝细胞保护作用相比,STAT3在肝脏炎症中发挥着更为复杂的作用。在肝脏损伤模型中,与野生型(WT)小鼠相比,肝细胞特异性STAT3敲除的小鼠可减轻由四氯化碳、酒精诱导的肝脏炎症,促进伴刀豆蛋白(ConA)诱导的免疫性肝炎和LPS引起的肝炎。这些研究表明,肝细胞内STAT3根据不同模型可表现出抗炎和促炎的不同作用,其中STAT3激活引起的促炎作用可能是由急性期蛋白和趋化因子所介导[16-17],抗炎作用可能是通过防止肝细胞损伤而减少肝坏死引起的炎症或抑制γ干扰素(IFN-γ)活化的STAT1,进而抑制肝内促炎信号。

      除此之外,多种肝损伤模型的研究表明,髓系细胞(包括KC和巨噬细胞)内STAT3在肝损伤模型中表现为抗炎作用[18-20]。但是,髓系细胞STAT3在肝细胞损伤中的作用却并不明确,如髓系细胞中STAT3的特异性缺失,能够增强小鼠对ConA诱导的T细胞免疫性肝炎和酒精诱导的肝损伤的敏感性,却减轻CCl4引起的肝细胞损伤。在髓系细胞中,STAT3的激活不仅能够抑制促炎细胞因子,如肿瘤坏死因子-α(TNF-α)和IFN-γ的表达,而且还会抑制肝保护因子,如IL-6、IL-22的产生 [21]。因此,STAT3对肝细胞损伤的影响主要由肝脏损伤期间产生的促炎因子和肝保护因子之间的平衡所决定。

    • 肝脏在组织损伤后具有很强的肝再生能力。肝脏再生由多种细胞因子、生长因子、激素及其下游信号通路调节[22-23]。研究认为,IL-6及其下游信号分子STAT3在促进肝再生过程中发挥关键作用;而抗炎细胞因子IL-10亦能够激活免疫细胞中的STAT3,在抑制炎症反应的同时抑制肝脏再生[15-16,24-25]

      肝切除术(PHx)是一种广泛用于研究肝脏再生的模型。在PHx后,肝细胞会快速增殖从而恢复肝脏的质量和功能。免疫细胞通过与肝细胞的直接相互作用或通过释放炎性细胞因子间接控制肝脏再生[26]。PHx后,肝脏中LPS水平升高,LPS刺激KC产生炎症细胞因子,如TNF-α和IL-6等,激活STAT3,随后肝脏开始再生[27-28]。据文献报道,Ⅰ型TNF受体(TNFR-1)缺失的小鼠会导致PHx后死亡率增加,并伴有肝细胞增殖减少[29]。同样在IL-6缺失的小鼠模型中,PHx后无STAT3激活,小鼠死亡率增加,肝细胞DNA合成减少,AP-1、Myc和cyclin D表达被抑制,在给予单次剂量的IL-6治疗后,恢复了STAT3结合及肝细胞的增殖,有效阻止了肝损伤[30]。在PHx后,IL-22也能发挥促进肝再生的作用,IL-22能够刺激肝细胞STAT3激活,增加多种促有丝分裂蛋白的表达,如细胞周期蛋白D1(Cyclin D1)[31]。以上研究表明,在PHx或组织损伤后,肝细胞STAT3的激活会促进肝细胞增殖。与肝细胞中激活STAT3和促进肝再生的细胞因子相比,免疫细胞中的抗炎因子IL-10也可激活STAT3,但负调节肝再生。在PHx后,IL-10在肝脏中的表达下调,随着STAT3的激活,IL-10的破坏会增加肝脏炎症和肝再生反应[28]

      其他细胞,如髓系细胞STAT3激活可通过抑制炎症反应来抑制肝再生。相比之下,其他免疫细胞和肝窦内皮细胞STAT3的激活在肝再生中的作用仍然需要进一步探索。

    • 肝纤维化是各种病因所致慢性肝损伤的瘢痕修复反应,其主要特征是细胞外基质的过度沉积,导致肝脏结构改变和肝功能丧失。肝星状细胞活化是肝纤维化发展中的核心事件,活化的肝星状细胞被认为是胶原纤维产生的最重要细胞[32-34]。此外,很多研究表明,成纤维细胞、骨髓内皮祖细胞和肝细胞也可以通过产生胶原促进纤维发生,而免疫细胞则可以通过细胞因子的产生调节纤维发生,如巨噬细胞释放的TGF-β通过刺激肝星状细胞活化促进纤维化,而免疫细胞1型T辅助细胞释放的IFN-γ通过诱导肝星状细胞凋亡和细胞周期阻滞抑制纤维化。

      IL-6是激活肝脏中STAT3的最重要细胞因子之一,关于IL-6在各种肝纤维化动物模型中的作用仍有争议。有研究显示,与WT小鼠相比,IL-6 敲除小鼠肝损伤和纤维化更为严重,但炎症较少[35]。肝细胞特异性IL-6Ra 敲除小鼠具有更多的脂肪变性和肝损伤,而骨髓特异性IL-6Ra敲除小鼠的肝脏浸润性巨噬细胞和中性粒细胞数量较少,肝纤维化也较严重[36]。由于IL-6受体在所有类型的肝脏细胞中表达,因此,IL-6可能通过靶向不同类型的肝脏细胞来加重和改善肝纤维化。一些动物模型研究表明,肝细胞STAT3在预防肝纤维化中起保护作用,主要是因为STAT3的肝保护和增殖功能[37]。肝细胞gp130/STAT3缺失会加重肝损伤,并通过增加TNF-α表达来加重炎症反应,这种慢性肝损伤会促进肝星状细胞活化和纤维化的发生。

      有关IL-6下游信号分子STAT3在肝纤维化中的作用已有很多研究报道。在CCl4诱导的肝纤维化模型中,愈肝龙可降低血清中炎症细胞因子TNF-α、IL-6的含量,抑制JAK/STAT3信号通路,同时降低了肝星状细胞活化标志物α-平滑肌激动蛋白(α-SMA)的表达[38]。 Su等[39]用STAT3的抑制剂索拉非尼和其衍生物SC-1治疗肝纤维化,索拉非尼和其衍生物SC-1能下调HSC和肝组织中的STAT3磷酸化水平,降低了α-SMA的表达。因此,通过抑制HSCs中STAT3的激活可改善肝纤维化,STAT3可能成为治疗肝纤维化中一种有前景的药物作用靶点。

    • 癌细胞和肿瘤微环境中异常活化的IL-6/STAT3信号被认为是癌症发生、发展的重要因素[40-41]。肝细胞癌(HCC)是成人中最常见的原发性恶性肿瘤,也是全球癌症死亡的第四大原因,目前尚无有效治疗方法[42]。HCC由病毒性肝炎、酒精性和非酒精性肝炎引起,多年慢性肝炎会发展为肝硬化最终进展成肝细胞癌[43]。肝细胞中的多种细胞因子(如IL-6、IL-6家族细胞因子等)在体内外均可促进HCC生长。据临床研究报道,HCC患者血清IL-6浓度显著升高,男性患者IL-6水平是女性的3~5倍[44]。由二乙基亚硝胺(DEN)诱导的HCC小鼠模型中也发现了类似的性别差异,与雌性小鼠相比,雄性小鼠血清中IL-6的浓度较高[45]。除此之外,IL-22激活肝细胞中的STAT3,也能够促进HCC的发生。在HepG2细胞中,过表达IL-22会组成性地激活STAT3,上调多种抗凋亡蛋白(如Bcl-2、Bcl-xl和Mcl-1)和有丝分裂原蛋白(如c-myc、Cyclin D1、Rb2和CDK4)的表达,促进肝癌细胞增殖。

      一些证据表明STAT3作为肝细胞中IL-6、IL-22的主要下游信号分子,在肝癌的发展中发挥重要作用。第一,在人肝肿瘤组织和肝癌细胞中均能够检测到组成性激活的STAT3。在体外使用STAT3的化学抑制剂或siRNA可诱导肝癌细胞凋亡和细胞周期阻滞,在体内能抑制肝癌细胞的生长,减少肝癌细胞迁移或侵袭[46-47]。第二,p-STAT3表达水平与HCC的组织学分级和肿瘤内微血管密度呈正相关[48]。第三,肝脏细胞因子信号传导抑制因子3(SOCS3)的缺失或甲基化沉默,会导致肝脏内STAT3活化增强,加快DEN诱导肝肿瘤的发生,SOCS3过表达则可抑制HCC细胞生长[49]。有文献报道,索拉非尼、乐伐替尼、瑞戈非尼可有效抑制STAT3信号,明显提高肝癌患者生存率,是晚期肝细胞癌的标准治疗方法[50-51]。Jung等[52]评估了STAT3小分子抑制剂(C188-9)在肝细胞癌中的预防和治疗潜力,发现C188-9可减少炎症反应,抑制肝细胞癌肿瘤生长。综上所述,STAT3的激活在肝肿瘤发生中扮演着重要角色,阻断STAT3可能是预防和治疗肝癌的有效手段。

    • STAT3广泛表达于机体不同类型的细胞和组织中,参与细胞生长、分化、凋亡等多种生理功能的调控,与炎症、纤维化、癌症等疾病的发生密切相关。STAT3的过度激活会促进多种疾病的发生,而抑制STAT3活化能够改善疾病的发病程度。目前,STAT3抑制剂已成为研究的热点,直接作用于STAT3的小分子抑制剂C188-9,能够减少TGF-β诱导的成纤维细胞和肝星状细胞活化,改善肝、肾等纤维化程度,抑制肿瘤细胞生长等;靶向STAT3的寡核苷酸类抑制剂AZD9150可用于治疗高度难治性淋巴瘤和非小细胞肺癌;间接作用于STAT3的JAK2抑制剂鲁索替尼,已被批准用于治疗骨髓纤维化和红细胞增多症;多激酶(包括STAT3)抑制剂索拉非尼,是美国 FDA 批准用于治疗不可切除的肝细胞癌和晚期肾细胞癌的抗癌药物,这些抑制剂的成功应用标志着STAT3抑制剂在临床治疗方面的广阔前景。除此之外,一些可抑制STAT3磷酸化的中药单体也越来越多的应用在不同的疾病研究中,例如黄酮类(淫羊藿)、萜类(青蒿)、醌类(丹参)、酚酸类(姜黄素)、碱类(苦参)和多糖类(南瓜)等。因此,STAT3是一个重要的药物作用靶点,通过研究STAT3在疾病中的作用,能够为STAT3抑制剂应用于疾病治疗提供理论依据。

      在肝病方面,STAT3在不同病因和疾病阶段以及不同细胞中扮演的角色不同。在肝再生阶段,IL-6、IL-22激活STAT3有助于增加有丝分裂蛋白的表达,促进肝细胞增殖,使肝脏恢复正常形态;在肝脏炎症反应过程中,STAT3对肝脏损伤的影响是由促炎因子和肝保护因子之间的平衡来决定的;在肝纤维化过程中,STAT3在肝星状细胞增殖和活化中起关键作用,过表达STAT3会加重肝纤维化进程,而采用STAT3抑制剂可改善纤维化程度;癌症阶段,使用STAT3抑制剂可以诱导肝癌细胞凋亡和细胞周期阻滞,抑制体内肝癌细胞的生长,减少肝癌细胞迁移或侵袭。

      因此,应用STAT3激活剂或抑制剂进行肝病治疗需要根据病因、病程等进行综合评估,在肝病不同进程阶段所采取的治疗方案不同,对于肝脏再生可利用STAT3激动剂进行调节,对于肝癌可利用STAT3抑制剂进行干预,而对于肝损伤、炎症和肝纤维化而言,需要根据不同病因靶向肝内不同细胞进行针对性治疗。

参考文献 (52)

目录

/

返回文章
返回