-
脓毒血症(sepsis)是指由细菌等病原微生物侵入机体引起的全身炎症反应综合征[1-2]。机体产生脓毒血症时会出现免疫功能失衡的现象,即抗炎反应和促炎反应交替发生,多器官炎症同时爆发最终引起炎症风暴[3-4]。中医上将炎症称为热症或湿热火毒,主要使用清热解毒或清湿热类的药物。目前对于脓毒血症缺乏专门的预防和治疗方法[5],寻找治疗脓毒血症的新方法及作用机制是医学亟待解决的问题[6]。
苣荬菜(Sonchus arvensis L.)是菊科苦苣菜属的干燥全草,茎直立,全株有白色乳汁,又称败酱草、曲麻菜,最早记载于《植物名实图考》,性寒,味苦,具有清热解毒,补虚止咳的功效,常用于治疗虚弱咳嗽,咽喉肿痛及菌痢等疾病[7-8]。其嫩茎可食用,属于药食同源的植物。苣荬菜分布范围十分广泛,在西北、华北、东北地区都有生长。苣荬菜中主要含有烷烃类、倍半萜类[8]、三萜类[9-10]、黄酮类[11]等化学成分。研究发现,苣荬菜内化学成分具有抗炎的作用[12-13],但苣荬菜治疗脓毒血症的原理及机制研究尚未见报道。
网络药理学作为生物信息学的新型工具,其“多成分、多途径、多靶点”的研究方法可高效预测植物化学成分的作用机制[14]。基于此,本研究利用网络药理学预测苣荬菜中潜在作用靶点及其机制,为改善脓毒血症提供新的思路。
-
通过文献挖掘及结合本课题组分离实验结果共得到71种化学成分,成分对应的潜在靶点579个。具体信息见表1。
表 1 苣荬菜化学成分基本信息
成分编号 成分名称 成分编号 成分名称 SA1 taraxasterol[10] SA37 1-tricosanol[16] SA2 β-Amyrin[10] SA38 2-vinylnaphthalene[16] SA3 α-Amyrin[10] SA39 methyl laurate[16] SA4 lupeol[10] SA40 linolenic acid[16] SA5 psi-taraxasterol[10] SA41 phytol[16] SA6 taraxasterol acetate[17] SA42 linoleic acid[16] SA7 β-sitosterol[18] SA43 methyl linoleate[16] SA8 daucosterol[18] SA44 rutin[19] SA9 santamarine[17] SA45 stigmasterol[20] SA10 fraxetin[21] SA46 ursolic acid[20] SA11 fraxetin[21] SA47 α-amyrenyl acetate[20] SA12 apigenin[20] SA48 β-amyrin acetate[20] SA13 apigenin-7-O-glucuronide[19] SA49 esculetin[22] SA14 acacetin[23] SA50 emodin[22] SA15 linarin[10] SA51 1-heptacosanol[15] SA16 luteolin[20] SA52 β-amyrenone[15] SA17 luteolin-7- O- glucopyranoside[19] SA53 taraxasterone[15] SA18 luteolin 7-galacturonide[10] SA54 squalene[15] SA19 lonicerin[10] SA55 taraxeryl acetate[15] SA20 chrysoeriol[23] SA56 balansenate I[15] SA21 kaempferide[23] SA57 dioctyl phthalate[15] SA22 isorhamnetin[23] SA58 stigmast-4-en-3-one[15] SA23 isorhamnetin-3-O-galactoside[10] SA59 2,4-di-tert-butylphenol[15] SA24 quercetin[19] SA60 oleic acid[15] SA25 hyperoside[10] SA61 ethyl 4-hydroxyphenylacetate[15] SA26 friedelin[9] SA62 dihydroreynosin[15] SA27 taraxerylacetate[9] SA63 ethyl2-(3,4-dihydroxyphenyl)acetate[15] SA28 β-amyrone[9] SA64 caffeic acid ethyl ester[15] SA29 bauerenyl acetate[9] SA65 syringaresinol[15] SA30 oleanane[9] SA66 phytenoic acid[15] SA31 palmitic acid[19] SA67 1-heneicosanol[15] SA32 methyl hexadecanoate[16] SA68 lauric acid[15] SA33 chrysanthenone[16] SA69 dammarenediol II[15] SA34 anisole[16] SA70 11β,13-dihydro-santamarin[15] SA35 methyl-14
methylpentadecanoate[16]SA71 1-hexacosanol[15] SA36 eugenol[16] -
将苣荬菜成分的Smiles号或2D结构输入SwissTarget Prediction数据库中,以probability>0为筛选依据,共得到苣荬菜成分潜在靶点579个。
在OMIM、GeneCards、TTD数据库检索得到脓毒血症相关靶点,合并去重后共得到3437个靶点。将579个成分靶点和3437个疾病靶点绘制韦恩图,共得到272个交集靶点(见图1)。
-
将苣荬菜的化学成分潜在靶点导入Cytoscape 3.8.2软件中进行可视化分析,获取“化学成分-潜在靶点”网络图(见图2)。其中包括71个成分节点,用菱形表示;272个成分潜在靶点,用长方形表示。化学成分根据度值前5个从大到小排序为:亚油酸、亚麻酸、二氢炔诺酸、油酸、14-甲基十五烷酸甲酯。相关靶点根据度值排序前5个分别是TNF(肿瘤坏死因子)、AKT1(丝氨酸/苏氨酸激酶)、IL-6(白介素-6)、IL-1β(白介素-1β)、TP53(肿瘤蛋白P53)。
-
STRING数据库中得到PPI网络图(图3),共有272个节点、4464条边,平均节点度值为32.8,其中排名前10的靶点为TNF、AKT1、IL-6、IL-1β、TP53、VEGFA(血管内皮生长因子A)、MAPK3(人丝裂原活化蛋白激酶3)、EGFR(人表皮生长因子受体)、SRC(非受体酪氨酸激酶)、STAT3(信号转导及转录激活蛋白3)。
-
将苣荬菜化学成分相关靶点和疾病的交集靶点输入DAVID数据库进行GO基因功能富集分析,得到GO富集条目1366个,其中涉及生物过程(BP)有关条目1002条,包括蛋白质磷酸化、炎症反应、胞浆钙离子浓度的正调节、药物反应等多种功能;涉及细胞组成(CC)有关条目119条,包括质膜、胞液、细胞质、高分子复合物、薄膜筏等;涉及分子功能(MF)相关条目245条,包括酶结合位点、蛋白激酶活性、同一蛋白质结合、RNA聚合酶II转录因子活性、配体活化序列特异性DNA结合、跨膜受体蛋白酪氨酸激酶活性等多种功能。各类富集评分值排名前5的通路见图4。
-
将苣荬菜化学成分相关靶点和疾病的交集靶点输入DAVID数据库进行KEGG基因功能富集分析,得到富集通路166个,对其P值排名前15的通路进行可视化分析,绘制气泡图(见图5)。结果显示靶点主要富集于癌症通路、脂质与动脉粥样硬化、人巨细胞病毒感染、HIF-1信号通路、卡波西肉瘤相关疱疹病毒感染、鞘磷脂信号通路、化学致癌-活性氧、C型凝集素受体信号通路、趋化因子信号通路、类固醇激素生物合成、催乳素信号通路等多条通路上。
Discussion on the chemical compositions and treatment mechanism of sepsis of Sonchus arvensis L. by network pharmacology
-
摘要:
目的 基于文献挖掘及网络药理学探究苣荬菜中化学成分治疗脓毒血症的潜在作用机制。 方法 以文献中化学成分为研究对象,借助Swiss Target Prediction数据库预测成分的潜在作用靶点;使用GeneCards、OMIM、TTD数据库筛选脓毒血症相关靶点;通过Venny 2.1.0 获得苣荬菜成分与脓毒血症的共同靶点;采用Cytoscape软件构建“药物成分-疾病靶点”网络;运用STRING数据库构建蛋白质相互作用(PPI)网络;运用DAVID数据库进行GO和KEGG富集分析。 结果 获得苣荬菜中化学成分71个,药物作用靶点579个,疾病相关靶点3437个,交集靶点272个。GO功能富集条目1366个,包括分子功能(MF)245个,生物过程(BP)1002个,细胞组成(CC)119个;KEGG信号通路166个。 结论 苣荬菜的主要活性成分包括亚油酸、亚麻酸、油酸等,它们可能通过作用于TNF、AKT1、IL-6、IL-1β、TP53等靶点,调节类固醇、鞘脂等各种激素以及表皮因子、趋化因子的表达,产生抗炎作用进而发挥治疗脓毒血症的功效。 Abstract:Objective To explore the effective constituents from Sonchus arvensis L. and the potential mechanism in treating sepsis by network pharmacology. Methods The chemical ingredients reported in the literature were taken as research objects and Swiss Target Prediction database was used to collect the identify the potential targets of those ingredients. The GeneCards, OMIM and TTD databases were applied to screen the sepsis related molecular targets. The cross targets were obtained and used to construct the active ingredient-disease target network. In addition, the targets were also imported into STRING database to construct a PPI network. Finally, GO and KEGG enrichment analysis were performed on the target genes to predict the mechanism via DAVID database. Results 71 components from S. arvensis L. were obtained, which corresponded to 579 potential drug targets. There were 3437 related targets of sepsis. S. arvensis L. and sepsis shared 272 common targets. The results showed that 1366 terms were found by GO function enrichment, including 245 molecular functions (MF), 1002 biological processes (BP), and 119 cell composition (CC), The KEGG enrichment analysis suggested that 166 signaling pathways were involved. Conclusion The study revealed that TNF, AKT1, IL-6, IL-1β, TP53 and some other targets might be affected by potentially active ingredients of S arvensis L. such as linoleic acid, linolenic acid and oleic acid to regulate the expression of steroids, sphingolipids hormones as well as epidermal factors and chemokines in treating sepsis. -
Key words:
- Sonchus arvensis L. /
- sepsis /
- network pharmacology /
- IL-6 /
- TNF
-
表 1 苣荬菜化学成分基本信息
成分编号 成分名称 成分编号 成分名称 SA1 taraxasterol[10] SA37 1-tricosanol[16] SA2 β-Amyrin[10] SA38 2-vinylnaphthalene[16] SA3 α-Amyrin[10] SA39 methyl laurate[16] SA4 lupeol[10] SA40 linolenic acid[16] SA5 psi-taraxasterol[10] SA41 phytol[16] SA6 taraxasterol acetate[17] SA42 linoleic acid[16] SA7 β-sitosterol[18] SA43 methyl linoleate[16] SA8 daucosterol[18] SA44 rutin[19] SA9 santamarine[17] SA45 stigmasterol[20] SA10 fraxetin[21] SA46 ursolic acid[20] SA11 fraxetin[21] SA47 α-amyrenyl acetate[20] SA12 apigenin[20] SA48 β-amyrin acetate[20] SA13 apigenin-7-O-glucuronide[19] SA49 esculetin[22] SA14 acacetin[23] SA50 emodin[22] SA15 linarin[10] SA51 1-heptacosanol[15] SA16 luteolin[20] SA52 β-amyrenone[15] SA17 luteolin-7- O- glucopyranoside[19] SA53 taraxasterone[15] SA18 luteolin 7-galacturonide[10] SA54 squalene[15] SA19 lonicerin[10] SA55 taraxeryl acetate[15] SA20 chrysoeriol[23] SA56 balansenate I[15] SA21 kaempferide[23] SA57 dioctyl phthalate[15] SA22 isorhamnetin[23] SA58 stigmast-4-en-3-one[15] SA23 isorhamnetin-3-O-galactoside[10] SA59 2,4-di-tert-butylphenol[15] SA24 quercetin[19] SA60 oleic acid[15] SA25 hyperoside[10] SA61 ethyl 4-hydroxyphenylacetate[15] SA26 friedelin[9] SA62 dihydroreynosin[15] SA27 taraxerylacetate[9] SA63 ethyl2-(3,4-dihydroxyphenyl)acetate[15] SA28 β-amyrone[9] SA64 caffeic acid ethyl ester[15] SA29 bauerenyl acetate[9] SA65 syringaresinol[15] SA30 oleanane[9] SA66 phytenoic acid[15] SA31 palmitic acid[19] SA67 1-heneicosanol[15] SA32 methyl hexadecanoate[16] SA68 lauric acid[15] SA33 chrysanthenone[16] SA69 dammarenediol II[15] SA34 anisole[16] SA70 11β,13-dihydro-santamarin[15] SA35 methyl-14
methylpentadecanoate[16]SA71 1-hexacosanol[15] SA36 eugenol[16] -
[1] BECKER KL, SNIDER R, NYLEN ES. Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitations[J]. Crit Care Med,2008,36(3):941-952. doi: 10.1097/CCM.0B013E318165BABB [2] EVANS L, RHODES A, ALHAZZANI W, et al. Surviving Sepsis campaign: international guidelines for management of Sepsis and septic shock 2021[J]. Intensive Care Med,2021,47(11):1181-1247. doi: 10.1007/s00134-021-06506-y [3] PASPARAKIS M, VANDENABEELE P. Necroptosis and its role in inflammation[J]. Nature,2015,517(7534):311-320. doi: 10.1038/nature14191 [4] VANDE WALLE L, LAMKANFI M. Pyroptosis[J]. Curr Biol,2016,26(13):R568-R572. doi: 10.1016/j.cub.2016.02.019 [5] POLAT G, UGAN R A, CADIRCI E, et al. Sepsis and septic shock: current treatment strategies and new approaches[J]. Eurasian J Med,2017,49(1):53-58. doi: 10.5152/eurasianjmed.2017.17062 [6] RUDD K E, KISSOON N, LIMMATHUROTSAKUL D, et al. The global burden of sepsis: barriers and potential solutions[J]. Crit Care,2018,22(1):232. doi: 10.1186/s13054-018-2157-z [7] 吴其濬. 植物名实图考-上册: 三十八卷[M]. 新第1版 北京: 中华书局, 1963. [8] 中国科学院. 中国植物志[M]. 科学出版社, 2004. [9] 武斌, 张朝凤, 张勉. 苣荬菜全草中的三萜类成分[J]. 药学与临床研究, 2010, 18(3):276-278. doi: 10.3969/j.issn.1673-7806.2010.03.024 [10] 张洪民, 渠桂荣, 吴立军, 等. 裂叶苣荬菜的研究进展[J]. 中草药, 1997, 28(11):691-693. doi: 10.3321/j.issn:0253-2670.1997.11.022 [11] 张霞, 刘伟锐, 姜蕊, 等. 不同产地、采收时间的苣荬菜地上部位总黄酮含量的考察[J]. 中南药学, 2015, 13(4):417-420. doi: 10.7539/j.issn.1672-2981.2015.04.021 [12] PARISA N, HIDAYAT R, MARITSKA Z, et al. Evaluation of the anti-gout effect of Sonchus Arvensis on monosodium urate crystal-induced gout arthritis via anti-inflammatory action - an in vivo study[J]. Med Pharm Rep,2021,94(3):358-365. [13] CHEN L, LIN X, XIAO J B, et al. Sonchus oleraceus Linn protects against LPS-induced sepsis and inhibits inflammatory responses in RAW264.7 cells[J]. J Ethnopharmacol,2019,236:63-69. doi: 10.1016/j.jep.2019.02.039 [14] WANG Y Y, YANG H B, CHEN L X, et al. Network-based modeling of herb combinations in traditional Chinese medicine[J]. Brief Bioinform,2021,22(5):bbab106. doi: 10.1093/bib/bbab106 [15] 陈永春. 苣荬菜改善芥子气中毒损伤的有效成分及初步机制研究[D], 海军军医大学, 2019. [16] 乔春燕, 刘宁. 苣荬菜挥发油化学成分的GC-MS分析[J]. 东北农业大学学报, 2008, 39(6):112-114. doi: 10.3969/j.issn.1005-9369.2008.06.027 [17] 渠桂荣, 王素贤, 吴立军, 等. 裂叶苣荬菜的化学成分研究[J]. 中草药, 1992, 23(8):412. doi: 10.3321/j.issn:0253-2670.1992.08.002 [18] XIA Z, LU L H, LI L. Cytotoxic Steroids from Sonchus arvensis[J]. Chem Nat Compd,2020,56(6):1094-1099. doi: 10.1007/s10600-020-03234-5 [19] 蒋雷, 姚庆强, 解砚英. 苣荬菜化学成分的研究[J]. 食品与药品, 2009, 11(3):27-29. doi: 10.3969/j.issn.1672-979X.2009.02.009 [20] 徐扬军. 苣荬菜和鹿蹄橐吾化学成分及生物活性研究[D]. 兰州 兰州大学, 2008. [21] 罗集鹏, 楼之岑. 中药败酱草的形态组织学研究——Ⅲ. 菊科苦苣菜属、莴苣属和苦荬菜属植物[J]. 药学学报, 1985, 20(9):666-681. [22] XIA Z X, LIANG J Y. Steroids and phenols from Sonchus arvensis[J]. Chin J Nat Med,2010,8(4):267-269. [23] 渠桂荣, 刘建, 李新新, 等. 裂叶苣荬菜黄酮成分的研究[J]. 中草药, 1995, 26(5):233-235. doi: 10.3321/j.issn:0253-2670.1995.05.007 [24] TU T H, KIM H, YANG S, et al. Linoleic acid rescues microglia inflammation triggered by saturated fatty acid[J]. Biochem Biophys Res Commun,2019,513(1):201-206. doi: 10.1016/j.bbrc.2019.03.047 [25] HASSAN A, IBRAHIM A, MBODJI K, et al. An α-linolenic acid-rich formula reduces oxidative stress and inflammation by regulating NF-κB in rats with TNBS-induced colitis[J]. J Nutr,2010,140(10):1714-1721. doi: 10.3945/jn.109.119768 [26] 龙碧莹. 油酸对脂多糖诱导的小鼠巨噬细胞炎症反应的影响及其机制[D]. 衡阳 南华大学, 2019. [27] CHOUSTERMAN B G, SWIRSKI F K, WEBER G F. Cytokine storm and sepsis disease pathogenesis[J]. Semin Immunopathol,2017,39(5):517-528. doi: 10.1007/s00281-017-0639-8 [28] SETHI G, SHANMUGAM M K, RAMACHANDRAN L, et al. Multifaceted link between cancer and inflammation[J]. Biosci Rep,2012,32(1):1-15. doi: 10.1042/BSR20100136 [29] VALLABHAPURAPU S, KARIN M. Regulation and function of NF-kappaB transcription factors in the immune system[J]. Annu Rev Immunol,2009,27:693-733. doi: 10.1146/annurev.immunol.021908.132641 [30] MENG J, JIANG S J, JIANG D, et al. Butorphanol attenuates inflammation via targeting NF-κB in septic rats with brain injury[J]. Eur Rev Med Pharmacol Sci, 2019, 23(3 Suppl): 18643[pii]. [31] TAYLOR F B Jr, TOH C H, HOOTS W K, et al. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation[J]. Thromb Haemost,2001,86(5):1327-1330. [32] 杨汉东. 丝/苏氨酸蛋白激酶Pim-3被肿瘤坏死因子-α调节并促进血管内皮细胞芽生[D]. 武汉 武汉大学, 2012.