-
卡培他滨是一种新型的氟尿嘧啶类口服药,它是5-氟尿嘧啶(5-FU)的前体药物。卡培他滨口服给药方便、依从性好、疗效确切,是治疗结直肠癌的基石药物,但在治疗过程中产生的不良反应(手足综合征等)极大地影响了患者的治疗。手足综合征(HFS)是卡培他滨引起的不良反应中较为特殊的反应,也是卡培他滨在治疗过程中的药物剂量限制性不良反应,主要表现为皮肤红肿、水泡、出血、疼痛。合并使用环氧合酶、尿素霜、维生素B6、奥美拉唑也不能完全阻断手足综合征的发生[1-3];合并使用中草药如白芍、桂枝、甘草等可降低手足综合征的发生率[4]。口服卡培他滨的患者手足综合征发生率高达60%[1],严重降低患者用药依从性,严重手足综合征(约17%)的患者只能减少药物摄入量乃至停止服用药物,影响化疗按期、足量进行[5-6]。明确手足综合征的发生机制和有效干预对卡培他滨安全有效的应用具有重要价值。目前手足综合征模型的建立还没有统一的金标准,本实验尝试用ICR小鼠灌胃卡培他滨后建立手足综合征模型,为卡培他滨致手足综合征模型的建立及机制研究提供参考。
-
通过对比对照组与实验组ICR小鼠体重变化,发现对照组ICR小鼠,灌胃14 d后,体重明显增加;而实验组ICR小鼠,灌胃14 d后,体重明显降低。表1和图1 为14 d内ICR小鼠的体重变化,实验过程中实验组小鼠死亡3只。
表 1 实验周期内小鼠体重变化情况(m/g,
$ \bar{x}\pm s $ )组别 n 0 d 7 d 14 d 对照组 6 28.54±0.71 32.56±0.88 34.66±1.07 实验组 33 29.07±0.76 26.84±1.74*** 23.15±2.31*** *** P<0.001,与对照组比较。 -
与对照组ICR小鼠相比,19只实验组小鼠的足底皮肤明显出现红斑、肿涨并出现少许水泡(图2),认为该小鼠出现手足综合征,按照伦理要求将小鼠处死,收集足底皮肤组织样本和血浆样本。
-
将ICR小鼠四肢皮肤用4%多聚甲醛固定后进行H&E染色(因苏木精呈碱性,细胞核内的染色质与胞质内的核酸显紫蓝色;伊红呈酸性,细胞质和细胞外基质中的成分显红色),如图3显示。与正常ICR小鼠相比,手足综合征阳性小鼠皮肤表皮层增厚,角质层呈现粉红色,真皮层呈现浅蓝色,表皮层处在二者之间呈现蓝色。发生HFS小鼠皮肤颗粒层变薄,基底层和棘层间细胞数量减少。正常小鼠角质层明显较薄。
-
ICR小鼠共39只(对照组6只,实验组33只),19只实验组ICR小鼠出现手足综合征阳性症状,发生率为57.58%。实验组ICR小鼠灌胃给药1周,出现手足综合征阳性小鼠与未出现手足综合征小鼠相比:实验组小鼠足底皮肤颜色变深(深红色),少量小鼠四肢掌心有透明水泡样组织出现;在灌胃给药10 d后,实验组小鼠出现手足综合征阳性症状,四肢出现了红斑、脱屑、水泡(红斑出现最多,脱屑其次,水泡最少)等情况。
-
将收集的血浆样本按照前期报道的方法进行卡培他滨及其5种代谢产物(5'-脱氧-5-氟胞嘧啶核苷、去氧氟尿苷、5'-氟-2'-脱氧尿苷、5-氟尿嘧啶、5-氟二氢嘧啶-2,4-二酮[7])定量(ng/ml,mean±SD)。结果发现,发生手足综合征小鼠与未发生手足综合征小鼠相比,卡培他滨浓度(ng/ml)分别为(58.08±44.54)和(39.23±26.98),5'-脱氧-5-氟胞嘧啶核苷浓度(ng/ml)分别为(
6047.42 ±3331.94 )和(4442.77 ±2140.44 ),去氧氟尿苷浓度(ng/ml)分别为(2899.28 ±1821.15 )和(2018.81 ±1037.86 ),5'-氟-2'-脱氧尿苷浓度(ng/ml)分别为(112.89±36.85) 和(122.23±19.16),5-氟尿嘧啶浓度(ng/ml)分别为(46.86±23.08)和(38.33±20.62),5-氟二氢嘧啶-2,4-二酮浓度(ng/ml)分别为(24.45±14.79)和(27.34±17.84)。卡培他滨及其代谢产物在发生和未发生手足综合征小鼠体内暴露水平均无明显差异(P>0.05,图4)。
Establishment of mouse model of hand-foot syndrome induced by capecitabine
-
摘要:
目的 手足综合征是卡培他滨的剂量限制性毒性反应。目前手足综合征模型的建立并没有统一的金标准,本实验给予ICR小鼠灌胃卡培他滨,诱导手足综合征发生,为手足综合征模型的建立提供借签。 方法 42只雄性ICR小鼠随机分为对照组(6只)和实验组(36只),实验组持续2周灌胃给予卡培他滨(275 mg/kg,2次/d),对照组给予溶剂0.5% CMC-Na(4 ml/kg,2次/d),取小鼠足部皮肤样本进行H&E染色,观察足跖部特征性外观以及形态改变,评估手足综合征的动物模型是否成功构建;实验结束后处死小鼠,收集血浆,定量其中卡培他滨及其代谢产物浓度改变。 结果 6只对照组小鼠均未出现手足综合征症状;实验组19只小鼠足部皮肤出现红斑、肿胀等症状,H&E染色可见部分足底皮肤角表皮层增厚,部分角质脱失破损,判断为发生手足综合征。发生与未发生手足综合征小鼠血浆中卡培他滨及其代谢产物浓度未见明显差异。 结论 卡培他滨致小鼠手足综合征的模型构建成功;卡培他滨及其代谢产物体内暴露水平差异可能不是手足综合征发生的原因。 Abstract:Objective Hand-foot syndrome is a dose-limiting toxicity of capecitabine. At present, there is no unified gold standard for the establishment of hand-foot syndrome model. To induce hand-foot syndrome and provide a reference for the establishment of hand-foot syndrome model by administering capecitabine in ICR mice. Methods 42 male ICR mice were randomly divided into control group (6 mice) and experimental group (36 mice). The experimental group was given capecitabine (275 mg/kg, twice/d) by intragastric administration for two weeks, and the control group was given 0.5% CMC-Na (4 ml/kg, twice/d), to evaluate whether the animal model of hand-foot syndrome was successfully constructed through H&E staining of mouse foot skin samples and observe morphological changes and the characteristic appearance of mouse foot skin. After the experiment, the mice were sacrificed, and plasma was collected to quantify the concentrations of capecitabine and metabolites. Results Control mice did not showed symptoms of hand-foot syndrome. The skin of the feet of 19 mice in the experimental group showed symptoms such as erythema and swelling, and H&E staining results showed that the plantar skin angular epidermis was thickened, and part of the keratin was exfoliated and damaged, which was considered to be hand-foot syndrome. There were no significant differences in the concentrations of capecitabine and its metabolites between mice with and without hand-foot syndrome. Conclusion The model of hand-foot syndrome induced by capecitabine in mice was successfully established. Differences in exposure levels of capecitabine and metabolites may not be the cause of hand-foot syndrome. -
Key words:
- capecitabine /
- hand-foot syndrome /
- animal model /
- drug concentration /
- ICR mice
-
表 1 实验周期内小鼠体重变化情况(m/g,
$ \bar{x}\pm s $ )组别 n 0 d 7 d 14 d 对照组 6 28.54±0.71 32.56±0.88 34.66±1.07 实验组 33 29.07±0.76 26.84±1.74*** 23.15±2.31*** *** P<0.001,与对照组比较。 -
[1] PANDY J G P, FRANCO P I G, LI R K. Prophylactic strategies for hand-foot syndrome/skin reaction associated with systemic cancer treatment: a meta-analysis of randomized controlled trials[J]. Support Care Cancer, 2022, 30(11):8655-8666. doi: 10.1007/s00520-022-07175-3 [2] BRAIK T, YIM B, EVANS A, et al. Randomized trial of vitamin B6 for preventing hand-foot syndrome from capecitabine chemotherapy[J]. J Community Support Oncol, 2014, 12(2):65-70. doi: 10.12788/jcso.0017 [3] HIROMOTO S, KAWASHIRI T, YAMANAKA N, et al. Use of omeprazole, the proton pump inhibitor, as a potential therapy for the capecitabine-induced hand-foot syndrome[J]. Sci Rep, 2021, 11(1):8964. doi: 10.1038/s41598-021-88460-9 [4] DENG B, SUN W. Herbal medicine for hand-foot syndrome induced by fluoropyrimidines: a systematic review and meta-analysis[J]. Phytother Res, 2018, 32(7):1211-1228. doi: 10.1002/ptr.6068 [5] CARONIA D, MARTIN M, SASTRE J, et al. A polymorphism in the cytidine deaminase promoter predicts severe capecitabine-induced hand-foot syndrome[J]. Clin Cancer Res, 2011, 17(7):2006-2013. doi: 10.1158/1078-0432.CCR-10-1741 [6] 王志鹏. 卡培他滨不良反应和耐药生物标志物的发现[D]. 上海: 中国人民解放军海军军医大学, 2019. [7] WANG Z P, LI X X, YANG Y, et al. A sensitive and efficient method for determination of capecitabine and its five metabolites in human plasma based on one-step liquid-liquid extraction[J]. J Anal Methods Chem, 2019, 2019:1-10. [8] FETY R, ROLLAND F, Barberi-Heyob M, et al. Clinical impact of pharmacokinetically-guided dose adaptation of 5-fluorouracil: results from a multicentric randomized trial in patients with locally advanced head and neck carcinomas. Clin Cancer Res. 1998, 4(9): 2039-2045. [9] GAMELIN E, DELVA R, JACOB J, et al. Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol. 2008, 26(13): 2099-105. [10] MEZA-JUNCO J, SAWYER M B. Drug exposure: still an excellent biomarker[J]. Biomark Med, 2009, 3(6):723-731. doi: 10.2217/bmm.09.58 [11] DAHER ABDI Z, LAVAU-DENES S, PRÉMAUD A, et al. Pharmacokinetics and exposure-effect relationships of capecitabine in elderly patients with breast or colorectal cancer[J]. Cancer Chemother Pharmacol, 2014, 73(6):1285-1293. doi: 10.1007/s00280-014-2466-0 [12] FISCHEL J L, FORMENTO P, CICCOLINI J, et al. Lack of contribution of dihydrofluorouracil and α-fluoro-β-alanine to the cytotoxicity of 5'-deoxy-5-fluorouridine on human keratinocytes[J]. Anti Cancer Drugs, 2004, 15(10):969-974. doi: 10.1097/00001813-200411000-00006 [13] YANG B X, XIE X R, LV D Z, et al. Capecitabine induces hand-foot syndrome through elevated thymidine phosphorylase-mediated locoregional toxicity and GSDME-driven pyroptosis that can be relieved by tipiracil[J]. Br J Cancer, 2023, 128(2):219-231. doi: 10.1038/s41416-022-02039-3 [14] 黎鹏, 王炳胜, 李永民. 卡培他滨诱导手足综合征动物模型的建立[J]. 中华肿瘤防治杂志, 2017, 24(12):802-807. [15] DESMOULIN F, GILARD V, MALET-MARTINO M, et al. Metabolism of capecitabine, an oral fluorouracil prodrug: 19F NMR studies in animal models and human urine[J]. Drug Metab Dispos, 2002, 30(11):1221-1229. doi: 10.1124/dmd.30.11.1221 [16] DESMOULIN F, GILARD V, MARTINO R, et al. Isolation of an unknown metabolite of capecitabine, an oral 5-fluorouracil prodrug, and its identification by nuclear magnetic resonance and liquid chromatography–tandem mass spectrometry as a glucuroconjugate of 5’-deoxy-5-fluorocytidine, namely 2’-(β-d-glucuronic acid)–5’-deoxy-5-fluorocytidine[J]. J Chromatogr B, 2003, 792(2):323-332. doi: 10.1016/S1570-0232(03)00319-2 [17] HE X Y, WANG J L, WANG Q, et al. P38 MAPK, NF-κB, and JAK-STAT3 signaling pathways involved in capecitabine-induced hand-foot syndrome via interleukin 6 or interleukin 8 abnormal expression[J]. Chem Res Toxicol, 2022, 35(3):422-430. doi: 10.1021/acs.chemrestox.1c00317