-
尽管现代医疗卫生条件有了很大改善,但心血管疾病仍然是世界上主要的健康问题。据2018年世界卫生组织数据统计,每年因心血管疾病导致死亡人数占总死亡人数超过30%。动脉粥样硬化(AS)是动脉壁的一种慢性疾病,是引起心血管疾病的重要因素,病理特征为动脉内膜炎症、坏死、纤维化和钙化,动脉特定部位斑块形成[1-2]。AS致病因素较为复杂,目前认为主要与血管内皮细胞损伤、炎症反应、脂质代谢紊乱、自噬与凋亡失衡等有关。近些年研究发现,肠道菌群紊乱,特别是肠道菌群代谢产物和AS发生发展有着密切联系[3]。现代医学在AS防治中常用的保守治疗药物主要为他汀类药物,临床上取得一定的疗效,但是疗效不足以及药物的副作用等局限性也慢慢呈现出来[4]。传统中草药作为中华文化的瑰宝,在中国的应用超过5 000年,疗效显著,传承至今仍展现出强大生命力。中药尤其是中药复方由于具有多成分、多靶点、多途径的整体协同作用特点,在心血管疾病等复杂疾病的治疗方面显示出独特的优势。越来越多的学者研究中药复方治疗AS的药效物质基础及其作用机制,为中医药走向现代化、国际化奠定基础。本文综述近5年中药复方抗AS的作用机制,为抗AS中药复方的深入系统研究提供参考。
Review of anti-atherosclerosis mechanism of a TCM formula
-
摘要: 心血管疾病在全球的发病率和致死率仍居高不下,动脉粥样硬化(AS)是心血管疾病的重要病理基础,其致病机制至今尚未完全明确。目前主要认为,AS与血管内皮细胞损伤、脂质代谢紊乱、炎症反应、自噬和凋亡失衡等因素有关。传统中草药特别是中药复方在防治AS中取得良好疗效,对中药复方抗AS的药效及作用机制研究也越来越多。通过检索近5年的中药复方研究文献,综述中药复方抗AS作用机制,为抗AS中药复方的深入研究提供参考。Abstract: The global morbidity and mortality of cardiovascular diseases remain high. Atherosclerosis is an important pathological basis of cardiovascular diseases, and its pathogenic mechanism has not been fully clarified. It was reported that pathogenic mechanism of atherosclerosis is related to vascular endothelial cell injury, lipid metabolism disorder, inflammatory reaction, imbalance between autophagy and apoptosis, et al. Traditional Chinese medicine(TCM) formula has shown good effects in the prevention and treatment of atherosclerosis. There are a lot of studies that showed the anti-atherosclerosis effect and the mechanism of TCM formula. In this paper, we reviewed the mechanism of anti-atherosclerosis action of TCM formula by summarizing the research literatures in the past five years, and provide reference for the further systematic study of anti-atherosclerosis effect of TCM formula.
-
Key words:
- TCM formula /
- atherosclerosis /
- mechanism /
- review
-
[1] LIBBY P, RIDKER P M, HANSSON G K. Progress and challenges in translating the biology of atherosclerosis[J]. Nature,2011,473(7347):317-325. doi: 10.1038/nature10146 [2] BENTZON J F, OTSUKA F, VIRMANI R, et al. Mechanisms of plaque formation and rupture[J]. Circ Res,2014,114(12):1852-1866. doi: 10.1161/CIRCRESAHA.114.302721 [3] KOETH R A, WANG Z, LEVISON B S, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med,2013,19(5):576-585. doi: 10.1038/nm.3145 [4] 杜文婷, 王臻楠, 顾耘. 动脉粥样硬化的中西医认识概况[J]. 中西医结合心脑血管病杂志, 2016, 14(22):2634-2637. doi: 10.3969/j.issn.1672-1349.2016.22.014 [5] LIBBY P, BURING J E, BADIMON L, et al. Atherosclero-sis[J]. Nat Rev Dis Primers,2019,5(1):56. doi: 10.1038/s41572-019-0106-z [6] 刘传亮, 陈国华, 李蕾. 复方丹参川芎中药配方颗粒干预老年颈动脉粥样硬化的研究[J]. 世界最新医学信息文摘, 2019, 19(82):15-16, 19. [7] 梅琼, 李全胜, 张静, 等. 当归川芎组合对血脂及冠状动脉组织结构影响的实验研究[J]. 湖北中医药大学学报, 2015, 17(5):47-49. doi: 10.3969/j.issn.1008-987x.2015.05.16 [8] 张燕, 李芳, 徐丽. 益气滋阴、活血通络复方对动脉粥样硬化患者LDL-C和HDL-C水平的影响[J]. 饮食保健, 2016, 3(10):72-73. [9] 王磊, 姚淮芳. 复方三七护脉汤联合西医常规治疗心血瘀阻型冠心病稳定型心绞痛20例临床观察[J]. 甘肃中医药大学学报, 2019, 36(3):48-51. [10] MAGUIRE E M, PEARCE S W A, XIAO Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease[J]. Vascul Pharmacol,2019,112:54-71. doi: 10.1016/j.vph.2018.08.002 [11] 李杉杉, 申定珠, 陈川, 等. 以ABCA1为靶点的补肾中药复方防治动脉粥样硬化的思路探讨[J]. 中国中医急症, 2017, 26(5):834-837. doi: 10.3969/j.issn.1004-745X.2017.05.025 [12] 王晓宁. 化浊通脉方对动脉粥样硬化兔胆固醇逆向转运的影响[D]. 北京: 北京中医药大学, 2015. [13] 祝骥, 许颖龄, 卢德赵, 等. 复方丹参片对颈动脉粥样硬化兔PPAR-γ/LXR-α/ABCA1信号通路的影响[J]. 中国现代应用药学, 2016, 33(12):1503-1507. [14] 秦合伟, 李彦杰, 任锟, 等. 基于miR-33a调控ABCA1表达探讨血管软化丸抗动脉粥样硬化的作用机制[J]. 中医药信息, 2018, 35(6):1-7. [15] 许丽婷, 徐彬人, 盛蒙, 等. 黄连解毒汤含药血清对泡沫细胞ABCA1表达与胆固醇含量的影响[J]. 中国民族民间医药, 2020, 29(6):10-13. [16] HAO D, DANBIN W, MAOJUAN G, et al. Ethanol extracts of Danlou tablet attenuate atherosclerosis via inhibiting inflammation and promoting lipid effluent[J]. Pharmacol Res,2019,146:104306. doi: 10.1016/j.phrs.2019.104306 [17] HIGASHI Y, NOMA K, YOSHIZUMI M, et al. Endothelial function and oxidative stress in cardiovascular diseases[J]. Circ J,2009,73(3):411-418. doi: 10.1253/circj.CJ-08-1102 [18] KONDO T, HIROSE M, KAGEYAMA K. Roles of oxidative stress and redox regulation in atherosclerosis[J]. J Atheroscler Thromb,2009,16(5):532-538. doi: 10.5551/jat.1255 [19] GLIOZZI M, SCICCHITANO M, BOSCO F, et al. Modulation of nitric oxide synthases by oxidized ldls: role in vascular inflammation and atherosclerosis development[J]. International Journal of Molecular Sciences,2019,20(13):3294. doi: 10.3390/ijms20133294 [20] 李红蓉, 常成成, 郭勇英, 等. 通心络对氧化低密度脂蛋白损伤血管内皮细胞的保护作用[J]. 医学研究生学报, 2015, 28(11):1128-1132. [21] 汪玉成, 魏伟, 苏清平, 等. 泽泻汤对氧化型低密度脂蛋白诱导血管平滑肌细胞增殖的影响[J]. 中国动脉硬化杂志, 2016, 24(8):763-768. [22] 王红梅, 周建明, 吕耀中, 等. 龙血通络胶囊对氧化低密度脂蛋白损伤人脐静脉内皮细胞的保护作用[J]. 中国中药杂志, 2018, 43(6):1241-1246. [23] ZHU Y H, XIAN X M, WANG Z Z, et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules,2018,8(3):80. doi: 10.3390/biom8030080 [24] 肖安华, 李虹维, 颜春鲁, 等. 中药复方与有效成分调控NF-kB/MAPKs/JNK信号通路介导炎症反应抗AS的研究进展[J]. 中医药学报, 2019, 47(6):109-114. [25] CHENG L, PAN G F, ZHANG X D, et al. Yindanxinnaotong, a Chinese compound medicine, synergistically attenuates atherosclerosis progress[J]. Sci Rep,2015,5:12333. doi: 10.1038/srep12333 [26] 刘叙阳, 姜华. 3种不同治法的中药复方对Toll样受体4及下游信号转导通路主要元件的影响[J]. 中国实验方剂学杂志, 2016, 22(1):121-124. [27] 罗永苗. 基于NF-κB信号通路探讨参七脉心通胶囊抗动脉粥样硬化的作用机制[D]. 广州: 广州中医药大学, 2018. [28] 张冰冰, 石岩, 朱爱松. 中药复方益糖康对动脉粥样硬化兔核因子KB和丝裂原活化蛋白激酶信号通路的影响[J]. 时珍国医国药, 2018, 29(1):56-58. [29] COLIN S, CHINETTI-GBAGUIDI G, STAELS B. Macrophage phenotypes in atherosclerosis[J]. Immunol Rev,2014,262(1):153-166. doi: 10.1111/imr.12218 [30] DALL'ASTA M, DERLINDATI E, ARDIGÒ D, et al. Macrophage polarization: the answer to the diet/inflammation conundrum? Nutr Metab Cardiovasc Dis,2012,22(5):387-392. doi: 10.1016/j.numecd.2011.12.010 [31] 秦合伟, 李彦杰, 任锟, 等. 基于TLR3/TLR9介导巨噬细胞自噬/极化效应探讨血管软化丸抗AS的作用机制[J]. 辽宁中医杂志, 2019, 46(1):156-160, 225. [32] LI H R, CHANG L P, LIU Y J, et al. Effect of Tongxinluo on polarization of macrophages[J]. Chinese Pharmacological Bulletin,2017,33(4):577-580. [33] GUARNER F, MALAGELADA J R. Gut flora in health and disease[J]. Lancet,2003,361(9356):512-519. doi: 10.1016/S0140-6736(03)12489-0 [34] MENNI C, LIN C, CECELJA M, et al. Gut microbial diversity is associated with lower arterial stiffness in women[J]. Eur Heart J,2018,39(25):2390-2397. doi: 10.1093/eurheartj/ehy226 [35] LI J, LIN S Q, VANHOUTTE P M, et al. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in apoe-/- mice[J]. Circulation,2016,133(24):2434-2446. doi: 10.1161/CIRCULATIONAHA.115.019645 [36] PIECZYNSKA M D, YANG Y, PETRYKOWSKI S, et al. Gut microbiota and its metabolites in atherosclerosis develop-ment[J]. Molecules,2020,25(3):594. doi: 10.3390/molecules25030594 [37] CHEN Y, XU C, HUANG R, et al. Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice[J]. J Nutr Biochem,2018,56:175-182. doi: 10.1016/j.jnutbio.2018.02.011 [38] BARTOLOMAEUS H, BALOGH A, YAKOUB M, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage[J]. Circulation,2019,139(11):1407-1421. doi: 10.1161/CIRCULATIONAHA.118.036652 [39] ZHANG Y X, GU Y Y, CHEN Y H, et al. Dingxin Recipe IV attenuates atherosclerosis by regulating lipid metabolism through LXR-α/SREBP1 pathway and modulating the gut microbiota in ApoE-/- mice fed with HFD[J]. J Ethnopharmacol,2021,266:113436. doi: 10.1016/j.jep.2020.113436 [40] ZHU B, ZHAI Y, JI M, et al. Alisma orientalis beverage treats atherosclerosis by regulating gut microbiota in ApoE-/- mice[J]. Front Pharmacol,2020,11:570555. doi: 10.3389/fphar.2020.570555 [41] JI W Y, JIANG T, SUN Z, et al. The enhanced pharmacological effects of modified traditional Chinese medicine in attenuation of atherosclerosis is driven by modulation of gut microbiota[J]. Front Pharmacol,2020,11:546589. doi: 10.3389/fphar.2020.546589 [42] SUBRAMANIAN S, BLANTON L V, FRESE S A, et al. Cultivating healthy growth and nutrition through the gut microbiota[J]. Cell,2015,161(1):36-48. doi: 10.1016/j.cell.2015.03.013 [43] CHEN P B, BLACK A S, SOBEL A L, et al. Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis[J]. Nat Biotechnol,2020,38(11):1288-1297. doi: 10.1038/s41587-020-0549-5
计量
- 文章访问数: 6096
- HTML全文浏览量: 1961
- PDF下载量: 56
- 被引次数: 0