-
类风湿关节炎(rheumatoid arthritis,RA)是一种常见的自身免疫性疾病,以对称性多关节滑膜炎为主要临床表现,呈慢性、进行性及侵袭性,病情逐渐加重,最终可出现残疾,甚至累及脏器和神经系统而危及生命。目前RA 发病机制尚不明确,治疗主要是非甾体抗炎药、糖皮质激素、改善病情抗风湿药及生物制剂等对症治疗或改善病情治疗,但存在不同程度的疗效限制、治疗费用高或长期应用副作用较大等问题。昆仙胶囊作为“九五”国家中医药重点科技攻关项目成果,由昆明山海棠、枸杞子、菟丝子及淫羊藿等组成。已有的研究提示,原方中昆明山海棠有较好的抗炎镇痛与免疫调节作用,枸杞子、菟丝子与昆明山海棠配伍可有效降低其毒性,而淫羊藿与昆明山海棠配伍则可增强免疫调节作用,改善骨损伤。总之,该方有较好的抗炎镇痛、免疫调节及保护关节软骨的作用,可减轻滑膜炎症、修复关节软骨的损伤,毒副作用也相对较低[1-2]。临床研究显示,昆仙胶囊用于治疗RA患者效果显著,能有效缓解关节疼痛、晨僵症状,改善关节功能活动,不仅有较好的疗效,安全性也得到验证[3-6]。
近年来,RA发病机制的研究取得了较快进展,有关昆仙胶囊治疗RA的作用机制有待进一步挖掘研究。网络药理学是基于系统生物学的理论,对生物系统进行网络分析,选取特定信号节点(nodes)进行多靶点药物分子设计的新学科。本研究基于网络药理学技术,依托相应数据库和软件,构建“药物-成分-关键靶点-信号通路”网络,科学系统地分析昆仙胶囊对 RA 的作用机制,以期为后续的实验研究奠定基础。
-
使用TCMSP和HERB数据库检索枸杞子、菟丝子、淫羊藿及昆明山海棠的化合物共 384个:其中枸杞子有188个化合物,菟丝子有29个化合物,淫羊藿有130个化合物,昆明山海棠有37个化合物。依据OB≥30%且DL≥0.18筛选出化合物共131个:其中,枸杞子有45个,菟丝子有11个,淫羊藿有23个,昆明山海棠有7个。去除重复后,发现昆仙胶囊中活性成分81个,再通过TCMSP获取对应的药物成分靶点913个,删除重复后得到228个。部分活性成分见表1。
表 1 昆仙胶囊部分活性成分
成分代码 化合物名称 OB(%) DL MOL000006 木犀草素(luteolin) 36.16 0.25 MOL000098 槲皮素(quercetin) 46.43 0.28 MOL000211 迈林(mairin) 55.38 0.78 MOL000296 赫达拉汀(hederagenin) 36.91 0.75 MOL000354 异鼠李素(isorhamnetin) 49.6 0.31 MOL000358 β-谷固醇(beta-sitosterol) 36.91 0.75 MOL000359 谷甾醇(sitosterol) 36.91 0.75 MOL000422 山奈酚(kaempferol) 41.88 0.24 MOL000449 豆甾醇(stigmasterol) 43.83 0.76 MOL000622 甘露聚糖(magnograndiolide) 63.71 0.19 MOL000953 胆固醇(cholesterol) 37.87 0.68 MOL001323 谷固醇α1(sitosterol alpha1) 43.28 0.78 MOL001494 甘露醇 (mandenol) 42 0.19 MOL001495 亚油酸乙酯(ethyl linolenate) 46.1 0.2 MOL001510 24-表氨酯(24-epicampesterol) 37.58 0.71 MOL001558 芝麻素(sesamin) 56.55 0.83 MOL001645 乙酸亚油酯(linoleyl acetate) 42.1 0.2 MOL001771 poriferast-5-en-3beta-ol 36.91 0.75 MOL001792 甘草苷元(liquiritigenin) 32.76 0.18 MOL001979 羊毛甾醇(lanosterol) 42.12 0.75 -
通过 Genecards 数据库得到 RA 靶点4465,通过OMIN数据库得到RA相关靶点41个。通过交集去除重复靶点,共得到RA相关靶点4 494个。
-
利用 Venn 图制作网站将昆仙胶囊活性成分对应的 228 个靶点与 RA 对应的4494 个靶点进行交集,获得162个共有靶点(图1)。将 162个共有靶点导入 Cytoscape 3.7.2 软件,构建“化合物-靶点”的网络图并进行可视化分析(图2)。网络图包含65个化合物节点、162个靶点节点(公共靶点)和227条边,用绿色表示枸杞子的活性成分,紫色代表淫羊藿的活性成分,红色表示昆明山海棠的活性成分,黄色代表公共活性成分,橘色代表菟丝子的活性成分,蓝色代表靶点。连接活性成分与靶点的边表示两者之间具有相互作用。依据网络拓扑学性质可知,节点较多的化合物或药物靶点在整个网络中可能起到关键的作用,因此本研究筛选节点度较大的节点进行分析。
排名前5位的活性成分分别为槲皮素、木犀草素、山奈酚、β-谷甾醇、雷公藤甲素,分别能与103个、44个、36个、32个、31个靶点蛋白发生作用。排名前5位的靶点分别为孕酮受体(PGR)、前列腺素过氧化物合酶2(PTGS2)、前列腺素过氧化物合酶1(PTGS1)、盐皮质激素受体基因(NR3C2)、雄激素受体(AR),分别能与34个、32个、19个、18个、13个化合物发生作用。
-
应用STRING软件构建PPI网络(图3),此网络图中通过162个公共靶点得出,共有边84条,同时得到网络中关键靶点的频次。根据“度值>均值”筛选出关键节点20个,包括:IL-6、IKBKB、FOS、EGFR、EGF、CXCL8、CHUK、CCNB1、MYC、IL4、IL1B、VEGFA、JUN、CCND1、BCL2L1、CDKN1A、CASP8、STAT3、IL10、AKT1。度值排名前5位的靶点分别是AKT1、IL10、STAT3、CASP8及CDKN1A,可能为昆仙胶囊治疗RA的关键靶点。
-
GO生物过程(图4)主要包括:活性氧代谢过程的调控、正调控血管生成、凋亡信号通路的负调控、细胞对化学应激的反应等;分子功能(图5)包括:激酶活性的调节、肽酶活性的调节、DNA结合转录因子活性的正调控、激酶调节活性等;细胞组成(图6)包括:囊腔、宿主细胞内部分、突触前膜固有成分等;KEGG富集分析(图7)主要包括:IL-17信号通路、乙型肝炎、催乳素信号通路、麻疹等,其中,IL-17信号通路的占比最高,其次为乙型肝炎。
Mechanism of Kunxian capsule in the treatment of rheumatoid arthritis based on network pharmacology
-
摘要:
目的 采用网络药理学方法,探讨昆仙胶囊治疗类风湿关节炎(RA)的分子靶点及可能的作用机制。 方法 利用中药系统药理学数据库和分析平台(TCMSP)结合本草组鉴(HERB)检索昆仙胶囊所含中药的化学成分,并依据 TCMSP 数据库的口服生物利用度(OB)和类药性指数(DL)筛选出主要有效活性成分,并获取其对应的靶点。通过 Genecards数据库与OMIM数据库筛选出 RA 的靶点,利用 Venn图制作网站获取药物与疾病的共同靶点,运用Cytoscape构建“活性成分-靶点”网络;使用 String 数据库绘制靶蛋白相互作用(PPI)网络,利用Cytoscape软件中的ClueGo功能对公共靶点进行GO富集分析和KEGG富集分析。 结果 该研究共筛选出昆仙胶囊的有效活性成分81个,作用靶点913个,去除重复得到228个。从GeneCard数据库与OMIM数据库中获得RA的靶点4494个,通过交集获得公共靶点162个。揭示了槲皮素、木犀草素、山奈酚、β-谷甾醇及雷公藤甲素等5种成分是昆仙胶囊中的主要活性成分,AKT1、IL-10、STAT3、CASP8及CDKN1A可能是该药治疗RA的关键靶点。GO及KEGG富集分析结果显示,昆仙胶囊干预RA的作用机制主要与活性氧代谢过程的调控、激酶活性的调节、IL-17信号通路等有关,涉及感染、炎症及免疫的重要生物过程和信号通路。 结论 本研究从网络药理学角度,初步探讨了昆仙胶囊治疗RA的物质基础和作用机制,提示了其多成分、多靶点、多途径的整体调节特点,为后续分子生物学实验研究提供了思路与依据。 Abstract:Objective To explore the molecular targets and associated potential pathways of Kunxian capsule in the treatment of rheumatoid arthritis (RA) based on network pharmacology. Methods The constituents of Kunxian capsule were searched by Traditional Chinese Medicine Systems Pharmacology Database, Analysis Platform (TCMSP) and a high-throughput experiment- and reference-guided database of traditional Chinese medicine(HERB).The potential active ingredients and targets were retrieved based on TCMSP database. RA related gene targets were retrieved through GeneCards database and OMIM database. Venn online software was used to obtain the common target of drugs and diseases. The “compound-target” network diagram was constructed with Cytoscape software. String database was used to draw the protein interaction (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the intersection network were conducted by Bioconductor Database. Results 81 active ingredients and 913 targets were identified. 228 targets were obtained after removing the duplicates. 4494 target genes directly related to RA were obtained from the GeneCards databases and OMIM databases. 162 genes were obtained from the intersection of component-target and disease-target. It was revealed that five ingredients including quercetin, luteolin, kaempferol, β-sitosterol and triptolide are the main active ingredients in Kunxian capsule. AKT1, IL-10, STAT3, CASP8 and CDKN1A may be the main therapeutical targets. The results of GO and KEGG enrichment analysis showed that the mechanism of Kunxian capsule is mainly related to the regulation of reactive oxygen metabolism, the regulation of kinase activity, and IL-17 signaling pathway. The important biological processes and signaling pathways include infection, inflammation and immunity. Conclusion This research preliminarily explored the mechanism of Kunxian capsule in the treatment of RA by network pharmacology and suggested that the overall regulation is characterized by multi-components, multi-targets, and multi-channels. It provided some ideas for further molecular biology experiments. -
Key words:
- Kunxian capsule /
- rheumatoid arthritis /
- network pharmacology
-
表 1 昆仙胶囊部分活性成分
成分代码 化合物名称 OB(%) DL MOL000006 木犀草素(luteolin) 36.16 0.25 MOL000098 槲皮素(quercetin) 46.43 0.28 MOL000211 迈林(mairin) 55.38 0.78 MOL000296 赫达拉汀(hederagenin) 36.91 0.75 MOL000354 异鼠李素(isorhamnetin) 49.6 0.31 MOL000358 β-谷固醇(beta-sitosterol) 36.91 0.75 MOL000359 谷甾醇(sitosterol) 36.91 0.75 MOL000422 山奈酚(kaempferol) 41.88 0.24 MOL000449 豆甾醇(stigmasterol) 43.83 0.76 MOL000622 甘露聚糖(magnograndiolide) 63.71 0.19 MOL000953 胆固醇(cholesterol) 37.87 0.68 MOL001323 谷固醇α1(sitosterol alpha1) 43.28 0.78 MOL001494 甘露醇 (mandenol) 42 0.19 MOL001495 亚油酸乙酯(ethyl linolenate) 46.1 0.2 MOL001510 24-表氨酯(24-epicampesterol) 37.58 0.71 MOL001558 芝麻素(sesamin) 56.55 0.83 MOL001645 乙酸亚油酯(linoleyl acetate) 42.1 0.2 MOL001771 poriferast-5-en-3beta-ol 36.91 0.75 MOL001792 甘草苷元(liquiritigenin) 32.76 0.18 MOL001979 羊毛甾醇(lanosterol) 42.12 0.75 -
[1] 徐强, 林昌松, 王笑丹, 等. 昆仙胶囊对胶原诱导型关节炎大鼠滑膜及血清白细胞介素-8的影响[J]. 广州中医药大学学报, 2012, 29(4):415-419,490. [2] 王笑丹, 徐强, 林昌松, 等. 昆仙胶囊对大鼠诱导性关节炎滑膜及血清γ IP-10的影响[J]. 辽宁中医药大学学报, 2012, 14(7):161-164. [3] 刘畅. 昆仙胶囊治疗类风湿关节炎的临床价值分析[J]. 临床医药文献电子杂志, 2020, 7(10):154,156. [4] 陆艳. 昆仙胶囊治疗类风湿关节炎患者的疗效分析[J]. 中国药物经济学, 2018, 13(8):78-80. doi: 10.12010/j.issn.1673-5846.2018.08.024 [5] 林昌松, 杨岫岩, 戴冽, 等. 昆仙胶囊治疗类风湿关节炎多中心临床研究[J]. 中国中西医结合杂志, 2011, 31(6):769-774. [6] 周俊, 肖微, 吴锐, 等. 昆仙胶囊治疗类风湿关节炎有效性与安全性系统评价[J]. 辽宁中医药大学学报, 2016, 18(10):122-126. [7] TAO W, XU X, WANG X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease[J]. J Ethnopharmacol,2013,145(1):1-10. doi: 10.1016/j.jep.2012.09.051 [8] XU X, ZHANG W, HUANG C, et al. A novel chemometric method for the prediction of human oral bioavailability[J]. Int J Mol Sci,2012,13(6):6964-6982. doi: 10.3390/ijms13066964 [9] JAVADI F, AHMADZADEH A, EGHTESADI S, et al. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: a double-blind, randomized controlled trial[J]. J Am Coll Nutr,2017,36(1):9-15. doi: 10.1080/07315724.2016.1140093 [10] JI JJ, LIN Y, HUANG SS, ZHANG HL, et al. Quercetin: a potential natural drug for adjuvant treatment of rheumatoid arthritis[J]. Afr J Tradit Complement Altern Med,2013,10(3):418-421. [11] TAN W F, LIN L P, LI M H, et al. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential[J]. Eur J Pharmacol,2003,459(2-3):255-262. doi: 10.1016/S0014-2999(02)02848-0 [12] PAN F, ZHU L H, LV H, et al. Quercetin promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by upregulating lncRNA MALAT1[J]. Int J Mol Med,2016,38(5):1507-1514. doi: 10.3892/ijmm.2016.2755 [13] ZHAO J, CHEN B, PENG X, et al. Quercetin suppresses migration and invasion by targeting miR-146a/GATA6 axis in fibroblast-like synoviocytes of rheumatoid arthritis[J]. Immunopharmacol Immunotoxicol,2020,42(3):221-227. doi: 10.1080/08923973.2020.1742732 [14] YANG Y, ZHANG X, XU M, et al. Quercetin attenuates collagen-induced arthritis by restoration of Th17/Treg balance and activation of Heme Oxygenase 1-mediated anti-inflammatory effect[J]. Int Immunopharmacol,2018,54:153-162. doi: 10.1016/j.intimp.2017.11.013 [15] 刘杨, 吕冰清, 吴玉梅, 等. 木犀草素抑制类风湿关节炎大鼠NLRP3炎性小体活化增强关节骨保护作用研究[J]. 中华中医药杂志, 2021, 36(1):513-516. [16] LEE CJ, MOON SJ, JEONG JH, et al. Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis[J]. Cell Death Dis,2018,9(3):401. doi: 10.1038/s41419-018-0433-0 [17] 任建敏. 食物中植物甾醇生理活性及药理作用研究进展[J]. 食品工业科技, 2015, 36(22):389-393,399. [18] KRIPA K G, CHAMUNDEESWARI D, THANKA J, et al. Modulation of inflammatory markers by the ethanolic extract of Leucas aspera in adjuvant arthritis[J]. J Ethnopharmacol,2011,134(3):1024-1027. doi: 10.1016/j.jep.2011.01.010 [19] 李清宋, 邓晓霞, 林色奇, 等. 雷公藤甲素治疗类风湿关节炎作用机制研究进展[J]. 江西中医药, 2015, 46(6):73-76. [20] TONG S, LIU J, ZHANG C. Platelet-rich plasma inhibits inflammatory factors and represses rheumatoid fibroblast-like synoviocytes in rheumatoid arthritis[J]. Clin Exp Med,2017,17(4):441-449. doi: 10.1007/s10238-017-0449-2 [21] HERNÁNDEZ-BELLO J, OREGÓN-ROMERO E, VÁZQUEZ-VILLAMAR M, et al. Aberrant expression of interleukin-10 in rheumatoid arthritis: Relationship with IL10 haplotypes and autoantibodies[J]. Cytokine,2017,95:88-96. doi: 10.1016/j.cyto.2017.02.022 [22] MALEMUD C. Defective T-cell apoptosis and T-regulatory cell dysfunction in rheumatoid arthritis[J]. Cells,2018,7(12):223. doi: 10.3390/cells7120223 [23] DOMINGUEZ S, MONTGOMERY A B, HAINES G K, et al. The caspase-8/RIPK3 signaling axis in antigen presenting cells controls the inflammatory arthritic response[J]. Arthritis Res Ther,2017,19(1):1-16. doi: 10.1186/s13075-016-1210-z [24] GANG X, XU H, SI L, et al. Treatment effect of CDKN1A on rheumatoid arthritis by mediating proliferation and invasion of fibroblast-like synoviocytes cells[J]. Clin Exp Immunol,2018,194(2):220-230. doi: 10.1111/cei.13161 [25] STRZĘPA A, SZCZEPANIK M. IL-17-expressing cells as a potential therapeutic target for treatment of immunological disorders[J]. Pharmacol Rep,2011,63(1):30-44. doi: 10.1016/S1734-1140(11)70396-6 [26] EL-WAKEEL N, HAZZAA H, GAWISH A S. Hypothesis: Rheumatoid arthritis and periodontitis: a new possible link via prolactin hormone[J]. Med Hypotheses,2021,146:110350. doi: 10.1016/j.mehy.2020.110350