-
黑色素瘤由遗传和环境等因素诱导的表皮黑色素细胞恶变引起,是最具侵袭性的皮肤恶性肿瘤[1]。近年来黑色素瘤成为发病率增长最快的恶性肿瘤,发病率的年增长高达3%~5%。我国黑色素瘤年发病率虽然明显低于西方国家,但仍呈现较快的增长势头[2-3]。早期黑色素瘤治疗方式以手术为主,而对于我国黑色素瘤患者而言,由于早期诊断不足、亚型的分布异于西方国家,需要系统治疗的患者群体比例较高。晚期或转移性黑色素瘤的治疗策略包括:化学疗法、放射疗法、靶向疗法和免疫疗法。化疗与放疗因其非特异性和治疗抗性,在晚期黑色素瘤治疗中的意义有限。根据特定突变基因的靶向疗法应用广泛,但易产生耐药性,在治疗的数月内即导致复发[4]。晚期黑色素瘤的发病率较高,在美国癌症新发病例中排名第五。仅在2022年,美国有99 780例新发黑色素瘤病例,其中死亡病例7 650例[5]。由于黑色素瘤较高的发病率以及晚期黑色素瘤的治疗抗性,因此寻找新型有效的晚期黑色素瘤治疗方法成为了目前黑色素瘤治疗学的研究重点。
黑色素瘤是典型的高突变负荷肿瘤,具有高免疫原性特征[6],对免疫疗法较为敏感。在众多免疫疗法中,治疗性疫苗目的在于诱导针对肿瘤表达抗原的免疫识别,可以有效抑制黑色素瘤的转移与复发,并且毒性较低,这种优势是其他疗法所不具备的[7]。随着对肿瘤抗原呈递和免疫反应生物学的理解,研究者开始关注于针对特异抗原的疫苗设计优化。
由于树突状细胞(DC)可产生激活T细胞的全部信号,在肿瘤免疫反应的启动、编程和调节中起着关键作用,因此肿瘤治疗性DC疫苗成为了黑色素瘤治疗性疫苗的研究热点。本文将肿瘤治疗性DC疫苗在黑色素瘤中的研究及应用现状进行归纳整理,并对其局限性以及可能的改进策略进行探讨。
-
目前基于DC的治疗性肿瘤疫苗构建策略主要有:①常规的肿瘤治疗性疫苗;②靶向体内DC的肿瘤治疗性疫苗; ③体外DC过继的肿瘤治疗性疫苗。
常规的肿瘤治疗性疫苗涉及蛋白质或长肽形式的抗原加上有助于 DC 成熟的佐剂,如粒细胞-巨噬细胞集落刺激因子(GM-CSF)[23],但这种方法缺乏靶向性,需使用对DC具有高亲和力的重组载体或有利于靶向DC的新型佐剂来增强靶向性。
靶向体内DC的策略包括向宿主注射与抗原结合的抗DC抗体(如抗C型凝集素)并递送适当的成熟刺激物。这种方法会触发并增强免疫,但是由于某些患者的DC及其受体可能会发生改变,因此易导致免疫耐受[24]。
体外DC过继的肿瘤治疗性疫苗首先分离患者外周血单核细胞或者骨髓中的CD34+前体细胞,体外诱导分化为未成熟DC,然后加载肿瘤抗原并经促炎细胞因子活化,最后注射回宿主体内激活抗肿瘤特异性免疫[25-26]。
黑色素瘤治疗性DC疫苗已开展了多项临床试验(表1)。与辐照灭活的肿瘤细胞疫苗相比,治疗性DC疫苗在黑色素瘤患者中具有更好的预后[27];经过基因修饰而分泌GM-CSF的DC疫苗在预防黑色素瘤肺转移方面也优于常规的肿瘤细胞疫苗[28]。
表 1 黑色素瘤治疗性DC疫苗的临床试验
DC疫苗方案 临床试验编号 临床试验阶段 开始日期 临床试验结果 DC-疫苗 NCT01042366 Ⅱ期 2002年 因进展缓慢而终止,不良反应发生率较高 自体肿瘤细胞的抗原DC疫苗 NCI-V01-1646 Ⅱ期 2003年 治疗耐受性良好,在54例患者的临床试验中,30例患者5年生存率高达54% DC-疫苗 NCT00125749 Ⅰ期 2005年 中位生存率提高 自体肿瘤细胞的抗原DC疫苗 NCT00436930 Ⅱ期 2007年 与肿瘤细胞疫苗相比,DC疫苗组的生存率较优,中位生存时间15.9个月,2年生存率为72% 自体肿瘤细胞的抗原DC疫苗 NCT00948480 Ⅱ期 2009年 注射疫苗的患者中位生存期延长22.9个月,死亡风险降低70% 基于pDC的疫苗 NCT01690377 Ⅰ期 2012年 14例患者中有4例获得长期无进展生存(12 ~ 35个月),且其中3例与T细胞应答增强有关 免疫检查点抑制剂和基于DC的
疫苗NCT02678741 Ⅰ/Ⅱ期 2016 年 与免疫检查点抑制剂联合应用导致疫苗有效性
增强含有肽的天然髓系 DC 疫苗 NCT02993315 Ⅲ期 2016年 在进行中 派姆单抗、环磷酰胺和DC疫苗 NCT03092453 Ⅰ期 2017年 在进行中 自体全肿瘤细胞裂解物诱导的自体 DC 联合化疗药物环磷酰胺
NCT03671720Ⅰ期 2018年 在进行中
Research progress on therapeutic DC vaccine against melanoma
-
摘要: 黑色素瘤是最具侵袭性的皮肤恶性肿瘤,易发生早期转移和治疗后复发。治疗性肿瘤疫苗是新兴的免疫疗法,具有毒性低以及可抑制肿瘤转移的特点。目前已有多个针对黑色素瘤治疗性疫苗的研究,其中黑色素瘤治疗性树突状细胞(DC)疫苗引起了广泛关注。虽然肿瘤治疗性DC疫苗在黑色素瘤中的疗效已被多项研究证实,但该类疫苗存在免疫效应不足、单独使用疗效不佳等问题,仍具有较大的改进空间。本文对黑色素瘤的治疗性DC疫苗的研究现状进行了综述,并对肿瘤治疗性DC肿瘤的研究重点及优化策略进行展望。Abstract: Melanoma is the most aggressive skin malignant tumor, which is prone to early metastasis and relapse after treatment. Therapeutic tumor vaccines are new immunotherapies, which have the advantages of low toxicity and inhibiting tumor metastasis. Melanoma has a high mutation load and a large number of specific antigens. Currently, various types of tumor vaccines have been developed for melanoma, especially those based on dendritic cells (DC). Although the efficacy of therapeutic DC vaccines in melanoma has been confirmed by a number of studies, these vaccines still have problems such as insufficient immune effect and poor efficacy when used alone, and there is still a large room for improvement. In this paper, the current research status of therapeutic DC vaccines for melanoma was reviewed, and the research key points and optimization strategy of therapeutic DC tumor were prospected.
-
Key words:
- melanoma /
- therapeutic tumor vaccine /
- dendritic cell /
- immunotherapy
-
表 1 黑色素瘤治疗性DC疫苗的临床试验
DC疫苗方案 临床试验编号 临床试验阶段 开始日期 临床试验结果 DC-疫苗 NCT01042366 Ⅱ期 2002年 因进展缓慢而终止,不良反应发生率较高 自体肿瘤细胞的抗原DC疫苗 NCI-V01-1646 Ⅱ期 2003年 治疗耐受性良好,在54例患者的临床试验中,30例患者5年生存率高达54% DC-疫苗 NCT00125749 Ⅰ期 2005年 中位生存率提高 自体肿瘤细胞的抗原DC疫苗 NCT00436930 Ⅱ期 2007年 与肿瘤细胞疫苗相比,DC疫苗组的生存率较优,中位生存时间15.9个月,2年生存率为72% 自体肿瘤细胞的抗原DC疫苗 NCT00948480 Ⅱ期 2009年 注射疫苗的患者中位生存期延长22.9个月,死亡风险降低70% 基于pDC的疫苗 NCT01690377 Ⅰ期 2012年 14例患者中有4例获得长期无进展生存(12 ~ 35个月),且其中3例与T细胞应答增强有关 免疫检查点抑制剂和基于DC的
疫苗NCT02678741 Ⅰ/Ⅱ期 2016 年 与免疫检查点抑制剂联合应用导致疫苗有效性
增强含有肽的天然髓系 DC 疫苗 NCT02993315 Ⅲ期 2016年 在进行中 派姆单抗、环磷酰胺和DC疫苗 NCT03092453 Ⅰ期 2017年 在进行中 自体全肿瘤细胞裂解物诱导的自体 DC 联合化疗药物环磷酰胺
NCT03671720Ⅰ期 2018年 在进行中 -
[1] PALUNCIC J, KOVACEVIC Z, JANSSON P J, et al. Roads to melanoma: key pathways and emerging players in melanoma progression and oncogenic signaling[J]. Biochim Biophys Acta, 2016, 1863(4): 770-784. doi: 10.1016/j.bbamcr.2016.01.025 [2] ZHANG S W, SUN K X, ZHENG R S, et al. Cancer incidence and mortality in China, 2015[J]. J Natl Cancer Cent, 2021, 1(1): 2-11. doi: 10.1016/j.jncc.2020.12.001 [3] 高天文, 郭伟楠. 中国黑素瘤研究进展与新治疗策略[J]. 中华皮肤科杂志, 2021, 54(1): 27-32. [4] OLBRYT M, PIGŁOWSKI W, RAJCZYKOWSKI M, et al. Genetic profiling of advanced melanoma: candidate mutations for predicting sensitivity and resistance to targeted therapy[J]. Targ Oncol, 2020, 15(1): 101-113. doi: 10.1007/s11523-020-00695-0 [5] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clinicians, 2023, 73(1): 17-48. doi: 10.3322/caac.21763 [6] WEISS S A, WOLCHOK J D, SZNOL M. Immunotherapy of melanoma: facts and hopes[J]. Clin Cancer Res, 2019, 25(17): 5191-5201. doi: 10.1158/1078-0432.CCR-18-1550 [7] GUO C Q, MANJILI M H, SUBJECK J R, et al. Therapeutic cancer vaccines: past, present, and future[J]. Adv Cancer Res, 2013, 119: 421-475. [8] SCHWARTZENTRUBER D J, LAWSON D H, RICHARDS J M, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma[J]. N Engl J Med, 2011, 364(22): 2119-2127. doi: 10.1056/NEJMoa1012863 [9] BUTTERFIELD L H, VUJANOVIC L, SANTOS P M, et al. Multiple antigen-engineered DC vaccines with or without IFNα to promote antitumor immunity in melanoma[J]. J Immunother Cancer, 2019, 7(1): 113. doi: 10.1186/s40425-019-0552-x [10] DING Z Y, LI Q, ZHANG R, et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 26. doi: 10.1038/s41392-020-00448-5 [11] MOSAHEB M M, BROWN M C, DOBRIKOVA E Y, et al. Harnessing virus tropism for dendritic cells for vaccine design[J]. Curr Opin Virol, 2020, 44: 73-80. doi: 10.1016/j.coviro.2020.07.012 [12] MIRANDA L, Broz, . Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity[J]. Cancer Cell, 2014, 26(5): 638-652. doi: 10.1016/j.ccell.2014.09.007 [13] 肖鹏, 曹雪涛, 王青青. 恶性肿瘤免疫治疗的现状及展望[J]. 实用肿瘤杂志, 2016, 31(1): 5-9. doi: 10.13267/j.cnki.syzlzz.2016.01.003 [14] Hélène, Salmon, . Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition[J]. Immunity, 2016, 44(4): 924-938. doi: 10.1016/j.immuni.2016.03.012 [15] KWAK M, LEICK K M, MELSSEN M M, et al. Vaccine strategy in melanoma[J]. Surg Oncol Clin N Am, 2019, 28(3): 337-351. doi: 10.1016/j.soc.2019.02.003 [16] Roberts E, Broz M, Binnewies M, et al. Critical Role for CD103(+)/CD141(+) Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma[J]. Cancer Cell, 2016: 324-336. doi: 10.1016/j.ccell.2016.06.003 [17] GARDNER A, DE MINGO PULIDO Á, RUFFELL B. Dendritic cells and their role in immunotherapy[J]. Front Immunol, 2020, 11: 924. doi: 10.3389/fimmu.2020.00924 [18] WCULEK S K, CUETO F J, MUJAL A M, et al. Dendritic cells in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2020, 20(1): 7-24. doi: 10.1038/s41577-019-0210-z [19] PATIDAR A, SELVARAJ S, SARODE A, et al. DAMP-TLR-cytokine axis dictates the fate of tumor[J]. Cytokines, 2018, 104: 114-123. doi: 10.1016/j.cyto.2017.10.004 [20] JONGBLOED S L, KASSIANOS A J, MCDONALD K J, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens[J]. J Exp Med, 2010, 207(6): 1247-1260. doi: 10.1084/jem.20092140 [21] GUILLIAMS M, GINHOUX F, JAKUBZICK C, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny[J]. Nat Rev Immunol, 2014, 14(8): 571-578. doi: 10.1038/nri3712 [22] COLLIN M, BIGLEY V. Human dendritic cell subsets: an update[J]. Immunology, 2018, 154(1): 3-20. doi: 10.1111/imm.12888 [23] VanDeLaar, L, Coffer, et al. Regulation of dendritic cell development by GM-CSF: Molecular control and implications for immune homeostasis and therapy[J]. Blood the Journal of the American Society of Hematology, 2012. doi: 10.1182/blood-2011-11-370130 [24] SCHULER G. Dendritic cells in cancer immunotherapy[J]. Eur J Immunol, 2010, 40(8): 2123-2130. doi: 10.1002/eji.201040630 [25] RODRÍGUEZ PÉREZ Á, CAMPILLO-DAVO D, VAN TENDELOO V F I, et al. Cellular immunotherapy: a clinical state-of-the-art of a new paradigm for cancer treatment[J]. Clin Transl Oncol, 2020, 22(11): 1923-1937. doi: 10.1007/s12094-020-02344-4 [26] SAADELDIN M K, ABDEL-AZIZ A K, ABDELLATIF A. Dendritic cell vaccine immunotherapy; the beginning of the end of cancer and COVID-19. A hypothesis[J]. Med Hypotheses, 2021, 146: 110365. doi: 10.1016/j.mehy.2020.110365 [27] PALUCKA A K, UENO H, CONNOLLY J, et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity[J]. J Immunother, 2006, 29(5): 545-557. doi: 10.1097/01.cji.0000211309.90621.8b [28] SABADO R L, BHARDWAJ N. Dendritic cell immunotherapy[J]. Ann NY Acad Sci, 2013, 1284(1): 31-45. doi: 10.1111/nyas.12125 [29] MIURA R, SAWADA S I, MUKAI S A, et al. Synergistic anti-tumor efficacy by combination therapy of a self-assembled nanogel vaccine with an immune checkpoint anti-PD-1 antibody[J]. RSC Adv, 2020, 10(14): 8074-8079. doi: 10.1039/C9RA10066K [30] YI D H, APPEL S. Current status and future perspectives of dendritic cell-based cancer immunotherapy[J]. Scand J Immunol, 2013, 78(2): 167-171. doi: 10.1111/sji.12060 [31] LEE M, PARK C S, LEE Y R, et al. Resiquimod, a TLR7/8 agonist, promotes differentiation of myeloid-derived suppressor cells into macrophages and dendritic cells[J]. Arch Pharm Res, 2014, 37(9): 1234-1240. doi: 10.1007/s12272-014-0379-4 [32] Beek J J P V, Georgina Flórez-Grau, Gorris M A J, et al. Human pDCs Are Superior to cDC2s in Attracting Cytolytic Lymphocytes in Melanoma Patients Receiving DC Vaccination[J]. Cell Reports, 2020, 304): 1027-1038. e4. doi: 10.1016/j.celrep.2019.12.096 [33] DILLMAN R O, CORNFORTH A N, DEPRIEST C, et al. Tumor stem cell antigens as consolidative active specific immunotherapy: a randomized phase II trial of dendritic cells versus tumor cells in patients with metastatic melanoma[J]. J Immunother, 2012, 35(8): 641-649. doi: 10.1097/CJI.0b013e31826f79c8 [34] SQUADRITO M L, CIANCIARUSO C, HANSEN S K, et al. EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens[J]. Nat Methods, 2018, 15(3): 183-186. doi: 10.1038/nmeth.4579 [35] CARRENO B M, MAGRINI V, BECKER-HAPAK M, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells[J]. Science, 2015, 348(6236): 803-808. doi: 10.1126/science.aaa3828 [36] ZUPANČIČ E, CURATO C, KIM J S, et al. Nanoparticulate vaccine inhibits tumor growth via improved T cell recruitment into melanoma and huHER2 breast cancer[J]. Nanomedicine, 2018, 14(3): 835-847. doi: 10.1016/j.nano.2017.12.011 [37] YAZDANI M, JAAFARI M R, VERDI J, et al. Ex vivo- generated dendritic cell-based vaccines in melanoma: the role of nanoparticulate delivery systems[J]. Immunotherapy, 2020, 12(5): 333-349. doi: 10.2217/imt-2019-0173 [38] PAYANDEH Z, YARAHMADI M, NARIMAN-SALEH-FAM Z, et al. Immune therapy of melanoma: overview of therapeutic vaccines[J]. J Cell Physiol, 2019, 234(9): 14612-14621. doi: 10.1002/jcp.28181 [39] Celluzzi C M, Falo L D. Epidermal Dendritic Cells Induce Potent Antigen-Specific CTL-Mediated Immunity[J]. Journal of Investigative Dermatology, 1997, 108(5): 716-720. doi: 10.1111/1523-1747.ep12292095 [40] S, Wilgenhof. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients[J]. Annals of Oncology, 2013. doi: 10.1093/annonc/mdt245 [41] WILGENHOF S, CORTHALS J, HEIRMAN C, et al. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma[J]. J Clin Oncol, 2016, 34(12): 1330-1338. doi: 10.1200/JCO.2015.63.4121 [42] WILGENHOF S, CORTHALS J, VAN NUFFEL A M T, et al. Long-term clinical outcome of melanoma patients treated with messenger RNA-electroporated dendritic cell therapy following complete resection of metastases[J]. Cancer Immunol Immunother, 2015, 64(3): 381-388. doi: 10.1007/s00262-014-1642-8 [43] FANG P, LI X Y, DAI J, et al. Immune cell subset differentiation and tissue inflammation[J]. J Hematol Oncol, 2018, 11(1): 97. doi: 10.1186/s13045-018-0637-x