-
儿童侵袭性真菌感染的诊断越来越多,其中以念珠菌和曲霉菌感染最为常见[1,2]。伏立康唑因其抗菌谱广、耐药率低的特点,被国内外推荐作为应对侵袭性曲霉菌、念珠菌血症等严重威胁生命的真菌感染的一线治疗药物[3,4],适用于2岁以上的儿童。伏立康唑血液稳态谷浓度与临床疗效及不良反应有着密不可分的关系。肝脏细胞色素P450同工酶[5](如CYP2C19、CYP2C9、CYP3A5)影响伏立康唑的代谢,等位基因的突变使代谢酶的活性增强或降低。儿童因器官发育不成熟,生理状态等不同于成人,为达到有效的临床治疗,降低不良反应,急需探索基因多态性在伏立康唑儿童个体化用药中的相关性影响,对指导临床安全有效用药,实现儿童个体化的给药方案有重大的意义。
本研究通过收集2020年1月至2020年12月期间在我院与上海市儿童医院接受伏立康唑静脉治疗的50例侵袭性真菌感染住院儿童的血液标本,检测其血药浓度与基因型,分析相关基因分型对伏立康唑血药浓度、疗效以及不良反应的影响。
-
50例患儿均为静脉给药伏立康唑,q12h,使用疗程为10~56 d,中位时间13.50(10.50 ~ 20.30)d,所测药物浓度值在0.56~7.62 μg/ml之间,平均(3.56±1.87) μg/ml。本研究总体有效率为84%(42/50),总体不良反应发生率20%(10/50),给药后50例患儿中共有10例出现不良反应,其中1例总胆红素(TBIL>正常值上限10倍)伴谷草转氨酶(AST)升高,3例谷丙转氨酶(ALT>正常值上限3倍以上)升高,5例ALT与AST均升高,以及1例发生皮疹。此10例患儿均未终止治疗,其中6例继续观察,3例予以保肝药物治疗,1例予以抗过敏治疗。
参考中国与美国指南[8,9]推荐的血浆稳态谷浓度值范围(1.0~5.5/ml),将本研究病例按照实测结果分为3组。组A<1.0 μg/ml(13例)、组B 1.0~5.5 μg/ml(30例)、组C > 5.5 g/ml(7例)。结果A、B和C 3组有效率分别为61.5%、93.3%和85.7%,统计对比显示3组有效率存在显著差异(χ2=6.840,P=0.033)。3组的不良反应发生率分别为3例(3/13例, 23.1%),3例(3/30例, 10.0%)和4例(4/7例, 57.1%),统计对比结果显示,3组不良反应发生率存在显著差异(χ2=7.988, P=0.018),具体数据见表1。
表 1 临床疗效及不良反应
组别(μg/ml) 临床疗效 不良反应 例数(n) 有效(%) 无效(%) 例数(n/%) <1.0 13 8(61.5) 5(38.5) 3(23.1) 1.0~5.5 30 28(93.3) 2(6.7) 3(10.0) >5.5 7 6(85.7) 1(14.3) 4(57.1) χ2 6.84 7.988 P 0.033 0.018 -
根据CYP2C19*2与CYP2C19*3基因位点突变形成的不同酶代谢活性[10]类型,分别为快代谢型(EM)16例,占32%;中间代谢型(IM)27例,占54%;慢代谢型(PM)7例,占14%。三组患儿的伏立康唑谷浓度出现显著的统计学差异(F=15.359, P<0.001),EM患儿的药物浓度明显低于IM与PM(EM vs IM, P=0.019, EM vs PM, P<0.001, IM vs PM, P<0.001),IM药物浓度低于PM,差异均具有统计学意义,见表2。
表 2 CYP2C19基因型与药物浓度
代谢速度 CYP2C19
基因型酶活性 例数
(n)药物浓度
(ρB/μg·ml−1)快 *1/*1 高 16 1.30±0.24 中 *1/*2 中 25
3.45±0.20中 *1/*3 中 2 慢 *2/*2 低 1 5.92±0.41 慢 *2/*3 低 5 慢 *3/*3 低 1 F 15.359 P <0.001 -
检测可能影响CYP2C9代谢活性的SNPs:CYP2C9*3(rs1057910),在纳入研究的患儿中,CYP2C9*3(rs1057910)野生纯合子AA型占92%(46/50),突变杂合子CA型占8%(4/50),未发现突变纯合子CC型。研究结果显示,CYP2C9*3的突变对伏立康唑血浆谷浓度未产生显著的影响,差异无统计学意义(F=2.213, P=0.086),结果见表3。
表 3 CYP2C9基因型与药物浓度
(CYP2C9*3)基因型 例数(n) 药物浓度(ρB/μg·ml−1) 野生纯合子(AA) 46 2.78±0.34 突变杂合子(CA) 4 4.02±0.13 突变纯合子(CC) 0 − F 2.213 P 0.086 注:“−” 表示未检测。 -
检测可能影响CYP3A5代谢活性的SNPs:CYP3A5*3(rs776746)。在纳入研究的患儿中,CYP3A5*3野生纯合子CC型占54%(27/50),突变杂合子TC型占44%(22/50),突变纯合子TT型占2%(1/50)。CYP3A5*3位点的突变对伏立康唑血浆谷浓度未产生显著的影响,差异无统计学意义(F=0.757, P=0.475),结果见表4。
表 4 CYP3A5基因型与药物浓度
(CYP3A5*3)基因型 例数(n) 药物浓度(ρB/μg·ml−1) 野生纯合子(CC) 27 3.43±0.36 突变杂合子(TC) 22 3.86±0.29 突变纯合子(TT) 1 2.85±0 F 0.757 P 0.475
Correlation between plasma concentration of voriconazole and polymorphisms in CYP2C19, CYP2C9 and CYP3A5 genes in children
-
摘要:
目的 探索CYP2C19、CYP2C9、CYP3A5基因型对儿童伏立康唑血药浓度的影响。 方法 收集2020年1月至2020年12月,接受伏立康唑静脉治疗的50例侵袭性真菌感染住院儿童的血液标本。采用HPLC法检测伏立康唑血药谷浓度,采用飞行时间质谱检测系统进行CYP2C19、CYP2C9、CYP3A5基因型检测,分析儿童相关基因分型对伏立康唑血药浓度、疗效以及不良反应的影响。 结果 50例IFI儿童接受伏立康唑治疗后,总有效率达84%(42/50例),不良反应发生率20%(10/50例)。测定伏立康唑血药浓度范围0.56~7.62 μg/ml。结合CYP2C19基因位点的不同突变类型,产生快、中、慢3种代谢活性,检测结果显示:快代谢16例、中间代谢27例、慢代谢7例。3组间的血浆浓度有明显的差异,(F=15.359,P< 0.001),快代谢组的药物浓度明显低于中间代谢和慢代谢组。CYP2C9、CYP3A5的突变对血药浓度无明显影响,分别为(F=2.213,P=0.086)和(F=0.757,P=0.475)。 结论 伏立康唑治疗儿童侵袭性真菌感染疗效显著,不良反应轻微。CYP2C19基因型与药物代谢速率明显相关,是影响血药浓度的重要因素,开展伏立康唑的药物浓度与基因型的检测,有助于临床调整有效药物剂量,实现更为科学的个体化治疗。 Abstract:Objective To explore the effects of CYP2C19, CYP2C9 and CYP3A5 genotypes on the plasma concentration of voriconazole in children. Methods Collected blood samples from 50 hospitalized children with invasive fungal infections who received intravenous voriconazole from January 2020 to December 2020. High performance liquid chromatography was used to detect the blood trough concentration of voriconazole, and the time-of-flight mass spectrometry detection system was used to detect the genotypes of CYP2C19, CYP2C9 and CYP3A5, and the effects of children’s genotyping on the plasma concentration, efficacy and adverse reactions of voriconazole were analyzed. Results The total effective rate of 50 children with IFI was 84% (42/50) after voriconazole treatment. The incidence of adverse reactions was 20% (10/50 cases). The measured plasma concentration of voriconazole ranged from 0.56~7.62 μg/ml. Combined with the different mutation types of CYP2C19 gene loci, three metabolic activities were produced: fast, medium and slow, and the test results showed that there were 16 cases of fast metabolism, 27 cases of intermediate metabolism and 7 cases of slow metabolism. There was a significant difference in plasma concentrations between the three groups (F=15.359, P< 0.001), and the drug concentrations in the fast metabolic group were significantly lower than those in the intermediate metabolic and slow metabolic groups. The mutations of CYP2C9 and CYP3A5 had no significant effect on the plasma concentrations of the drugs, which were (F=2.213, P=0.086)and (F=0.757, P=0.475). Conclusion Voriconazole had significant efficacy in the treatment of invasive fungal infections in children, and the adverse reactions were mild. CYP2C19 genotype was significantly related to the rate of drug metabolism and was an important factor affecting blood drug concentration, the detection of drug concentration and genotype of voriconazole was helpful to adjust the effective drug dose clinically and achieve more scientific and individualized treatment. -
Key words:
- voriconazole /
- pharmacogenes /
- blood drug concentrations /
- pediatric
-
表 1 临床疗效及不良反应
组别(μg/ml) 临床疗效 不良反应 例数(n) 有效(%) 无效(%) 例数(n/%) <1.0 13 8(61.5) 5(38.5) 3(23.1) 1.0~5.5 30 28(93.3) 2(6.7) 3(10.0) >5.5 7 6(85.7) 1(14.3) 4(57.1) χ2 6.84 7.988 P 0.033 0.018 表 2 CYP2C19基因型与药物浓度
代谢速度 CYP2C19
基因型酶活性 例数
(n)药物浓度
(ρB/μg·ml−1)快 *1/*1 高 16 1.30±0.24 中 *1/*2 中 25
3.45±0.20中 *1/*3 中 2 慢 *2/*2 低 1 5.92±0.41 慢 *2/*3 低 5 慢 *3/*3 低 1 F 15.359 P <0.001 表 3 CYP2C9基因型与药物浓度
(CYP2C9*3)基因型 例数(n) 药物浓度(ρB/μg·ml−1) 野生纯合子(AA) 46 2.78±0.34 突变杂合子(CA) 4 4.02±0.13 突变纯合子(CC) 0 − F 2.213 P 0.086 注:“−” 表示未检测。 表 4 CYP3A5基因型与药物浓度
(CYP3A5*3)基因型 例数(n) 药物浓度(ρB/μg·ml−1) 野生纯合子(CC) 27 3.43±0.36 突变杂合子(TC) 22 3.86±0.29 突变纯合子(TT) 1 2.85±0 F 0.757 P 0.475 -
[1] FERRERAS-ANTOLÍN L, SHARLAND M, WARRIS A. Management of invasive fungal disease in neonates and children[J]. Pediatr Infect Dis J, 2019, 38(6S Suppl 1): S2-S6. [2] WARRIS A, LEHRNBECHER T, ROILIDES E, et al. ESCMID-ECMM guideline: diagnosis and management of invasive aspergillosis in neonates and children[J]. Clin Microbiol Infect, 2019, 25(9):1096-1113. [3] MCCREARY EK, DAVIS MR, NARAYANAN N, et al. Utility of triazole antifungal therapeutic drug monitoring: Insights from the Society of Infectious Diseases Pharmacists: Endorsed by the Mycoses Study Group Education and Research Consortium[J]. Pharmacotherapy. 2023, 43(10): 1043-1050. [4] 中华医学会儿科学分会, 中华儿科杂志编辑委员会. 儿童侵袭性肺部真菌感染临床实践专家共识(2022版)[J]. 中华儿科志, 2022, 60(4):274-282. [5] LEE J, NG P, HAMANDI B, et al. Effect of therapeutic drug monitoring and cytochrome P450 2C19 genotyping on clinical outcomes of voriconazole: a systematic review[J]. Ann Pharmacother, 2021, 55(4):509-529. doi: 10.1177/1060028020948174 [6] 陈恳, 张相林, 克晓燕, 等. 《伏立康唑个体化用药指南》解读[J]. 临床药物治疗杂志, 2019, 17(3):47-52,78. doi: 10.3969/j.issn.1672-3384.2019.03.012 [7] 中国医药生物技术协会药物性肝损伤防治技术专业委员会, 中华医学会肝病学分会药物性肝病学组. 中国药物性肝损伤诊治指南(2023年版)[J]. 中华肝脏病杂志, 2023, 31(4):355-384. doi: 10.3760/cma.j.cn501113-20230419-00176-1 [8] CHEN K, ZHANG X L, KE X Y, et al. Individualized medication of voriconazole: a practice guideline of the division of therapeutic drug monitoring, Chinese Pharmacological Society[J]. Ther Drug Monit, 2018, 40(6):663-674. doi: 10.1097/FTD.0000000000000561 [9] PATTERSON T F, THOMPSON G R, DENNING D W, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America[J]. Clin Infect Dis, 2016, 63(4):e1-e60. [10] MORIYAMA B, OBENG A O, BARBARINO J, et al. Clinical pharmacogenetics implementation consortium(CPIC)guidelines for CYP2C19 and voriconazole therapy[J]. Clin Pharmacol Ther, 2017, 102(1):45-51. [11] TAHER KW, ALMOFADA R, ALOMAIR S, et al. Therapeutic drug monitoring of voriconazole in critically Ill pediatric patients: a single-center retrospective study. Paediatr Drugs, 2024, 26(2): 197-203. [12] PASCUAL A, CSAJKA C, BUCLIN T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections[J]. Clin Infect Dis, 2012, 55(3):381-390. doi: 10.1093/cid/cis437 [13] 郭一萌, 安琳娜, 陈恳, 等. 伏立康唑在不同年龄段使用中安全性和有效性以及药代动力学差异的系统评价[J]. 中国临床药理学杂志, 2016, 32(3):261-263. [14] BAHAR MA, SETIAWAN D, HAK E, et al. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6[J]. Pharmacogenomics, 2017, 18(7):701-739. doi: 10.2217/pgs-2017-0194 [15] SHI C C, XIAO Y B, MAO Y, et al. Voriconazole: a review of population pharmacokinetic analyses[J]. Clin Pharmacokinet, 2019, 58(6):687-703. [16] 邵贝贝, 赵宁民, 段虹飞, 等. 基于基因多态性的伏立康唑药代动力学研究状况[J]. 中国临床药理学杂志, 2016, 32(7):663-666. [17] FAN X, ZHANG H, WEN Z, et al. Effects of CYP2C19, CYP2C9 and CYP3A4 gene polymorphisms on plasma voriconazole levels in Chinese pediatric patients. Pharmacogenet Genomics[J]. 2022, 32(4): 152-158. [18] AIUCHI N, NAKAGAWA J, SAKURABA H, et al. Impact of polymorphisms of pharmacokinetics-related genes and the inflammatory response on the metabolism of voriconazole[J]. Pharmacol Res Perspect, 2022, 10(2):e00935. doi: 10.1002/prp2.935