[1]
|
Mei LT, Choong PFM, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery[J]. Peptides, 2010, 31(1):184. |
[2]
|
Park W, Na K. Polyelectrolyte complex of chondroitin sulfate and peptide with lower pI value in poly(lactide-co-glycolide) microsphere for stability and controlled release[J]. Colloids Surf. B Biointerfaces , 2009, 72 (2):193. |
[3]
|
Duchêne D, Wouessidjewe D, Ponchel G. Cyclodextrins and carrier systems[J]. J Control Release, 1999, 62(1-2):263. |
[4]
|
Challa R, Abuja A, Ali J, et al. Cyclodextrins in drug delivery: an updated review[J]. AAPS Pharmscitech, 2005, 6(2):E329. |
[5]
|
Ungaro F, Villa Bianca R, Giovino C, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs[J]. J Control Release, 2009, 135(1):25. |
[6]
|
Agüeros M, Areses P, Campanero MA, et al. Bioadhesive properties and biodistribution of cyclodextrin-poly(anhydride) nanoparticles[J]. Eur J Pharm. Sci, 2009, 37(3-4):231. |
[7]
|
Agüeros M, Zabaleta V, Espuelas S, et al. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles[J]. J Control Release, 2010, 145(1):2. |
[8]
|
Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery[J]. Int J Pharm, 2006, 325(1-2):147. |
[9]
|
Han YD, Tian HY, He P, et al. Insulin nanoparticle preparation and encapsulation into poly(lactic-co-glycolic acid) microspheres by using an anhydrous system[J]. Int J Pharm, 2009, 378(1-2):159. |
[10]
|
Builders PF, Kunle OO, Okpaku LC, et al. Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin[J]. Eur J Pharm Biopharm, 2008, 70(3):777. |
[11]
|
Zhang YL, Wei W, Lv PP, et al. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin[J]. Eur J Pharm Biopharm, 2011, 77(1):11. |
[12]
|
Sonia TA, Sharma CP. In vitro evaluation of N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan for oral insulin delivery[J]. Carbohydrate Polymers, 2011, 84(1):103. |
[13]
|
Pan Y, Xu H, Zhao HY, et al. Study on preparation and oral efficacy of insulin-loaded poly ( lactic-co-glycolic acid)nanoparticles[J] . Acta Pharm Sin (药学学报), 2002, 37(7):374. |
[14]
|
Marco W, Wim EH , Wim J . Protein instability in poly(lactic2co2glycolic acid) nanoparticles[J]. Pharm Res, 2000, 17 (10) :1159. |
[15]
|
Lehr CM, Bouwstra JA , Kok W, et al. Effects of the mucoadhesive polymer polycarbophil on the intestinal absorption of a peptide drug in the rat[J]. J Pharm Pharmacol, 1992, 44(2):402. |
[16]
|
Pimienta C, Chouinard F, Labib A, et al. Effects of various poloxamer coatings on in vitro adhesion of isohexylcyanoacrylate nanospheres to rat ileal segments under liquid flow[J]. Int J Pharm, 1992, 80(1):1. |
[17]
|
Pan Y, Zhao HY, Xu H, et al. Effect of experimental parameters on the encapsulation of insulin-loaded poly(lactide2co2glycolide) nanoparticles prepared by a double emulsion method[J]. J Chin Pharm Sci, 2002, 11(1):38. |
[18]
|
Lee VH.Peptidase activities in absorptive mucosae[J].Biochem Soc, 1989, 17(3):937. |
[19]
|
Jain AK, Chalasani KB, Khar RK, et al. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery[J]. J Drug Target, 2007, 15(6):417. |
[20]
|
杨天智, 王向涛, 阎雪莹, 等. 胰岛素柔性纳米脂质体的口腔给药研究[J]. 药学学报,2002, 37(11):885. |
[21]
|
YIN DF, LU Y, ZHANG H, et al. Preparation of Glucagon-Like Peptide-1 Loaded PLGA Microspheres: Characterizations, Release Studies and Bioactivities in Vitro/in Vivo[J]. Chem Pharm Bull, 2008, 56(2):156. |
[22]
|
Joseph J W, Kalitsky J, St-Pierre S, et al. Oral delivery of glucagon-like peptide-1 in modified polymer preparation normalizes basal glycaemia in diabetic bd/bd mice[J]. Diabetologia, 2000, 43(10):1319. |
[23]
|
Gao ZH, Tang Y, Chen JQ, et al. A novel DPP-IV-resistant analog of glucagon-like peptide-1 (GLP-1): KGLP-1 alone or in combination with long-acting PLGA microspheres[J]. Peptides, 2009, 30(10):1874. |
[24]
|
Sten Madsbad, Professor. Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)-preclinical and clinical results. Best Practice & Research Clinical Endocrinology & Metabolism, 2009, 23(4):463. |
[25]
|
Yang HJ, Park IS, Na K. Biocompatible microspheres based on acetylated polysaccharide prepared from water-in-oil-in-water (W1/O/W2) double-emulsion method for delivery of type II diabetic drug (exenatide)[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2009, 340(1-3):115. |
[26]
|
Nguyen HN, Wey SP, Juang JH, et al. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo[J]. Biomaterials, 2011, 32(10):2673. |
[27]
|
Hanato J, Kuriyama K,et al. Liposomal formulations of glucagon-like peptide-1: Improved bioavailability and anti-diabetic effect[J]. Int J Pharm, 2009, 382(1-2):111. |
[28]
|
Singh M, Shirley B, Bajwa K, et al. Controlled release of recombinant insulin-like growth factor from a novel formulation of polylactide-co-glycolide microparticles[J]. J Control Release, 2001, 70(1-2):21. |
[29]
|
Chen FM, Zhao YM, Wu H, et al. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres[J]. J Control Release, 2006, 114(2):209. |
[30]
|
Champa Jayasuriya A.Kibbe S. Rapid biomineralization of chitosan microparticles to apply in bone regeneration[J]. J Mater Sci: Mater Med, 2010, 21(2):393. |