留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

结合微管蛋白位点的小分子血管阻断剂的研究进展

李唯 周峰 郑灿辉 周有骏

李唯, 周峰, 郑灿辉, 周有骏. 结合微管蛋白位点的小分子血管阻断剂的研究进展[J]. 药学实践与服务, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
引用本文: 李唯, 周峰, 郑灿辉, 周有骏. 结合微管蛋白位点的小分子血管阻断剂的研究进展[J]. 药学实践与服务, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
LI Wei, ZHOU Feng, ZHENG Can-hui, ZHOU You-jun. Progress on microtubulin-site vascular disruption agents[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
Citation: LI Wei, ZHOU Feng, ZHENG Can-hui, ZHOU You-jun. Progress on microtubulin-site vascular disruption agents[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001

结合微管蛋白位点的小分子血管阻断剂的研究进展

doi: 10.3969/j.issn.1006-0111.2013.06.001
基金项目: 国家自然科学基金(21172260);上海市基础研究重点课题(09JC1417500).

Progress on microtubulin-site vascular disruption agents

  • 摘要: 血管阻断剂(vascular disrupting agents,VDAs)是能选择性损伤肿瘤相关血管的一类抗肿瘤药物。这类药物通过选择性地破坏肿瘤相关血管,阻断肿瘤组织的氧气和营养物质供应,造成继发的肿瘤细胞死亡,从而达到靶向治疗肿瘤的目的。目前已有10多个作用于微管蛋白的血管阻断剂进入临床研究,显示出良好的开发应用前景。本文对目前进入临床研究的VDAs进行综述。
  • [1] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. Cancer J Clin, 2011, 61(2):69.
    [2] He X, Li S, Huang H, et al. A pharmacokinetic and safety study of single dose intravenous combretastatin A4 phosphate in Chinese patients with refractory solid tumours[J]. Br J Clin Pharmacol, 2011, 71(6):860.
    [3] Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels[J]. Nat Rev Cancer, 2005, 5(6):423.
    [4] Pettit GR, Temple C Jr, Narayanan VL, et al. Antineoplastic agents 322. Synthesis of combretastatin A-4 prodrugs[J]. Anticancer Drug Des, 1995, 10(4):299.
    [5] Ding XQ, Zhang ZQ, Li S, et al. Combretastatin A-4 phosphate induces programmed cell death in vascular endothelial cells[J]. Oncol Res, 2011, 19(7):303.
    [6] Nathan P, Zweifel M, Padhani AR, et al. Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer[J]. Clin Cancer Res, 2012, 18(12):3428.
    [7] Delmonte A, Sessa C. AVE8062:a new combretastatin derivative vascular disrupting agent[J]. Expert Opin Invest Drugs, 2009, 18(10):1541.
    [8] Hori K. Antineoplastic strategy:irreversible tumor blood flow stasis induced by the combretastatin A-4 derivative AVE8062 (AC7700)[J]. Chemotherapy, 2005, 51(6):357.
    [9] Nihei Y, Suga Y, Morinaga Y, et al. A novel combretastatin A-4 derivative, AC-7700, shows marked antitumor activity against advanced solid tumors and orthotopically transplanted tumors[J]. Jpn J Cancer Res, 1999, 90(9):1016.
    [10] Clémenson C, Jouannot E, Merino-Trigo A, et al. The vascular disrupting agent ombrabulin (AVE8062) enhances the efficacy of standard therapies in head and neck squamous cell carcinoma xenograft models[J]. Invest New Drugs, 2013, 31(2):273.
    [11] Sessa C, Soria JC, Tolcher A, et al. A phase I pharmacokinetic and pharmacodynamic study of AVE8062, a novel vascular disrupting agent, in patients (PTS) with advanced solid tumors-preliminary results[J]. Ann Oncol, 2009, 20:24.
    [12] Morinaga Y, Suga Y, Ehara S, et al. Combination effect of AC-7700, a novel combretastatin A-4 derivative, and cisplatin against murine and human tumors in vivo[J]. Cancer Sci, 2003, 94(2):200.
    [13] Salmon HW, Siemann DW. Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity[J]. Clin Cancer Res, 2006, 12(13):4090.
    [14] Rice L, Pampo C, Lepler S, et al. Support of a free radical mechanism for enhanced antitumor efficacy of the microtubule disruptor OXi4503[J]. Microvasc Res, 2011, 81(1):44.
    [15] Folkes LK, Christlieb M, Madej E, et al. Oxidative metabolism of combretastatin A-1 producesquinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals[J]. Chem Res Toxicol, 2007, 20(12):1885.
    [16] Sheng Y, Hua J, Pinney KG, et al. Combretastatin family member OXI4503 induces tumor vascular collapse through the induction of endothelial apoptosis[J]. Int J Cancer, 2004, 111(4):604.
    [17] Cummings J, Zweifel M, Smith N, et al. Evaluation of cell death mechanisms induced by the vascular disrupting agent OXi4503 during a phase I clinical trial[J]. Br J Cancer, 2012, 106(11):1766.
    [18] Wankhede M, Dedeugd C, Siemann DW, et al. In vivo functional differences in microvascular response of 4T1 and Caki-1 tumors after treatment with OXi4503[J]. Oncol Rep, 2010, 23(3):685.
    [19] Mckeage MJ, Baguley BC. Disrupting established tumor blood vessels:an emerging therapeutic strategy for cancer[J]. Cancer, 2010, 116(8):1859.
    [20] Patterson DM, Zweifel M, Middleton MR, et al. Phase I clinical and pharmacokinetic evaluation of the vascular-disrupting agent OXi4503 in patients with advanced solid tumors[J]. Clin Cancer Res, 2012, 18(5):1415.
    [21] Madlambayan GJ, Meacham AM, Hosaka K, et al. Leukemia regression by vascular disruption and antiangiogenic therapy[J]. Blood, 2010, 116(9):1539.
    [22] Flynn BL, Gill GS, Grobelny DW, et al. Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties[J]. J Med Chem, 2011, 54(17):6014.
    [23] Kremmidiotis G, Leske AF, Lavranos TC, et al. BNC105:a novel tubulin polymerization inhibitor that selectively disrupts tumor vasculature and displays single-agent antitumor efficacy[J]. Mol Cancer Ther, 2010, 9(6):1562.
    [24] Rischin D, Bibby DC, Chong G, et al. Clinical, pharmacodynamic, and pharmacokinetic evaluation of BNC105P:a phase I trial of a novel vascular disrupting agent and inhibitor of cancer cell proliferation[J]. Clin Cancer Res, 2011, 17(15):5152.
    [25] Sirisoma N, Kasibhatla S, Pervin A, et al. Discovery of 2-chloro-N-(4-methoxyphenyl)-N-methylquinazolin-4-amine (EP128265, MPI-0441138) as a potent inducer of apoptosis with high in vivo activity[J]. J Med Chem, 2008, 51(15):4771.
    [26] Sirisoma N, Pervin A, Zhang H, et al. Discovery of N-(4-methoxyphenyl)-N,2-dimethylquinazolin-4-amine, a potent apoptosis inducer and efficacious anticancer agent with high blood brain barrier penetration[J]. J Med Chem, 2009, 52(8):2341.
    [27] Kasibhatla S, Baichwal V, Cai SX, et al. MPC-6827:a small-molecule inhibitor of microtubuleformation that is not a substrate for multidrug resistance pumps[J]. Cancer Res, 2007, 67(12):5865.
    [28] Tsimberidou AM, Akerley W, Schabel MC, et al. Phase I clinical trial of MPC-6827(Azixa), a microtubule destabilizing agent, in patients with advanced cancer[J]. Mol Cancer Ther, 2010, 9(12):3410.
    [29] Kemnitzer W, Drewe J, Jiang S, et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group[J]. J Med Chem, 2004, 47(25):6299.
    [30] Kemnitzer W, Kasibhatla S, Jiang S, et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7-and 5-, 6-, 8-positions[J]. Bioorg Med Chem Lett, 2005, 15(21):4745.
    [31] Read WL, Rosen P, Lee P, et al. Pharmacokinetic and pharmacodynamic results of a 4-hr iv administration phase I study with EPC2407, a novel vascular disrupting agent[J]. J Clin Oncol,2009, 27(15Suppl):3569.
    [32] Fox E, Maris JM, Widemann BC, et al. A phase I study of ABT-751, an orally bioavailable tubulin inhibitor, administered daily for 21 days every 28 days in pediatric patients with solid tumors[J]. Clin Cancer Res, 2008, 14(4):1111.
    [33] Burns CJ, Fantino E, Phillips ID, et al. CYT997:a novel orally active tubulin polymerization inhibitor with potent cytotoxic and vascular disrupting activity in vitro and in vivo[J]. Mol Cancer Ther, 2009, 8(11):3036.
    [34] Burge M, Francesconi A, Kotasek D, et al. Phase I, pharmacokinetic and pharmacodynamic evaluation of CYT997, an orally-bioavailable cytotoxic and vascular-disrupting agent[J]. Invest New Drugs, 2012, 31(1):126.
  • [1] 练鲁英, 刘盈, 殷佳, 诸国樑, 徐飞.  上海某三级公立医院药品管理内部控制评价实践研究 . 药学实践与服务, 2024, 42(): 1-7. doi: 10.12206/j.issn.2097-2024.202402003
    [2] 李清, 郭宜银, 陈颖, 瞿发林, 董文燊, 戈煜.  夜宁胶囊对小鼠镇静催眠作用及其机制的研究 . 药学实践与服务, 2024, 42(8): 346-349. doi: 10.12206/j.issn.2097-2024.202211047
    [3] 张成中, 朱雪艳, 卜其涛, 王宏瑞, 黄宝康.  基于网络药理学与分子对接预测鸡骨草特征图谱研究 . 药学实践与服务, 2024, 42(8): 350-358. doi: 10.12206/j.issn.2097-2024.202303048
    [4] 毛泽玲, 文波.  大黄的HPLC指纹图谱及禁用农药的残留研究 . 药学实践与服务, 2024, 42(7): 297-304, 314. doi: 10.12206/j.issn.2097-2024.202310057
    [5] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202401072
    [6] 陈莹, 许子华, 胡北, 崔亚玲, 高欢, 吴琼.  通便灵胶囊治疗便秘的药效与机制研究 . 药学实践与服务, 2024, 42(): 1-7. doi: 10.12206/j.issn.2097-2024.202404008
    [7] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [8] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
    [9] 崔俐俊, 陈嫣婷, 费永和, 陈静.  中外药品应急审批制度对比研究 . 药学实践与服务, 2024, 42(8): 359-364. doi: 10.12206/j.issn.2097-2024.202310015
    [10] 王晓飞, 张颖, 顾佳钰, 胡馨儿, 张海, 曹岩.  表面等离子共振传感器的识别元件在医药领域中的研究应用进展 . 药学实践与服务, 2024, 42(): 1-9. doi: 10.12206/j.issn.2097-2024.202309014
    [11] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [12] 钱淑雨, 李铁军.  耐碳青霉烯类肠杆菌耐药机制的研究进展 . 药学实践与服务, 2024, 42(10): 419-425. doi: 10.12206/j.issn.2097-2024.202405005
    [13] 顾佳钰, 胡馨儿, 王晓飞, 张颖, 张海, 曹岩.  侧流免疫层析定量检测方法的研究进展 . 药学实践与服务, 2024, 42(7): 273-277, 284. doi: 10.12206/j.issn.2097-2024.202307037
    [14] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
    [15] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [16] 杨凤艳, 张月, 陈恩贤, 缪雪蓉, 魏凯.  瑞马唑仑临床应用研究进展 . 药学实践与服务, 2024, 42(9): 365-374. doi: 10.12206/j.issn.2097-2024.202405026
    [17] 张林晨, 张小琴, 张俊平.  山楂酸药理作用的研究进展 . 药学实践与服务, 2024, 42(5): 185-189. doi: 10.12206/j.issn.2097-2024.202307052
    [18] 宋泽成, 陈林林, 鲁仁义, 刘梦肖, 王彦.  脓毒症治疗的研究进展 . 药学实践与服务, 2024, 42(11): 1-5. doi: 10.12206/j.issn.2097-2024.202405059
    [19] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [20] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(7): 278-284. doi: 10.12206/j.issn.2097-2024.202306040
  • 加载中
计量
  • 文章访问数:  3167
  • HTML全文浏览量:  345
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-07
  • 修回日期:  2013-04-01

结合微管蛋白位点的小分子血管阻断剂的研究进展

doi: 10.3969/j.issn.1006-0111.2013.06.001
    基金项目:  国家自然科学基金(21172260);上海市基础研究重点课题(09JC1417500).

摘要: 血管阻断剂(vascular disrupting agents,VDAs)是能选择性损伤肿瘤相关血管的一类抗肿瘤药物。这类药物通过选择性地破坏肿瘤相关血管,阻断肿瘤组织的氧气和营养物质供应,造成继发的肿瘤细胞死亡,从而达到靶向治疗肿瘤的目的。目前已有10多个作用于微管蛋白的血管阻断剂进入临床研究,显示出良好的开发应用前景。本文对目前进入临床研究的VDAs进行综述。

English Abstract

李唯, 周峰, 郑灿辉, 周有骏. 结合微管蛋白位点的小分子血管阻断剂的研究进展[J]. 药学实践与服务, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
引用本文: 李唯, 周峰, 郑灿辉, 周有骏. 结合微管蛋白位点的小分子血管阻断剂的研究进展[J]. 药学实践与服务, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
LI Wei, ZHOU Feng, ZHENG Can-hui, ZHOU You-jun. Progress on microtubulin-site vascular disruption agents[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
Citation: LI Wei, ZHOU Feng, ZHENG Can-hui, ZHOU You-jun. Progress on microtubulin-site vascular disruption agents[J]. Journal of Pharmaceutical Practice and Service, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
参考文献 (34)

目录

    /

    返回文章
    返回