留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

肿瘤干细胞的治疗耐受机制研究进展

曹梦雪 孙凡 林厚文

曹梦雪, 孙凡, 林厚文. 肿瘤干细胞的治疗耐受机制研究进展[J]. 药学实践与服务, 2017, 35(3): 193-196,247. doi: 10.3969/j.issn.1006-0111.2017.03.001
引用本文: 曹梦雪, 孙凡, 林厚文. 肿瘤干细胞的治疗耐受机制研究进展[J]. 药学实践与服务, 2017, 35(3): 193-196,247. doi: 10.3969/j.issn.1006-0111.2017.03.001
CAO Mengxue, SUN Fan, LIN Houwen. Advance in resistance mechanism of cancer stem cells therapy[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(3): 193-196,247. doi: 10.3969/j.issn.1006-0111.2017.03.001
Citation: CAO Mengxue, SUN Fan, LIN Houwen. Advance in resistance mechanism of cancer stem cells therapy[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(3): 193-196,247. doi: 10.3969/j.issn.1006-0111.2017.03.001

肿瘤干细胞的治疗耐受机制研究进展

doi: 10.3969/j.issn.1006-0111.2017.03.001
基金项目: 国家青年科学基金资助项目(81502936)

Advance in resistance mechanism of cancer stem cells therapy

  • 摘要: 肿瘤的发病率和死亡率位居各类疾病之首,肿瘤的复发和转移是目前肿瘤治疗失败的主要原因,肿瘤治疗的失败又与肿瘤干细胞有着密切的关系。肿瘤干细胞的耐药机制一般包括以下几个方面:高表达的ABC转运蛋白介导化疗药物外排;乙醛脱氢酶的高表达与肿瘤的发病率和预后差显著相关;高效的DNA损伤修复能力;促存活通路的激活能力。笔者综合介绍肿瘤干细胞几种主要的治疗耐受机制,以期为开发新型抗肿瘤药物以及临床合理用药提供理论依据。
  • [1] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J].Cell, 2011, 144 (5): 646-674.
    [2] Chufan EE, Kapoor K, Ambudkar SV. Drug-protein hydrogen bonds govern the inhibition of the ATPhydrolysis of the multidrug transporter P-glycoprotein[J].Biochem Pharmacol, 2016, (101): 40-53.
    [3] Guan GF, Zhang DJ, Zheng Y,et al. Significance of ATP-binding cassette transporter proteins in multidrug resistance of head and neck squamous cell carcinoma[J].Oncol Lett, 2015, 10 (2): 631-636.
    [4] Xie ZY, Lv K, Xiong Y,et al. ABCG2-meditated multidrug resistance and tumor-initiating capacity of side population cells from colon cancer[J]. Oncol Res Treat, 2014, 37 (11): 666-672.
    [5] Stacy AE, Jansson PJ, Richardson DR. Molecular pharmacology of ABCG2 and its role in chemoresistance[J]. Mol Pharmacol, 2013, 84 (5): 655-669.
    [6] Schexnayder C, Stratford RE. Genistein and Glyceollin effects on ABCC2 (MRP2) and ABCG2 (BCRP) in Caco-2 Cells[J]. Int J Environ Res Public Health, 2015, 13 (1):17-30.
    [7] Hu J, Zhang X, Wang F, et al. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo[J]. Oncotarget, 2015, 6 (42): 44643-44659.
    [8] Zhou Q, Ye M, Lu Y,et al. Curcumin improves the tumoricidal effect of mitomycin C by suppressing ABCG2 expression in stem cell-like breast cancer cells[J]. PLoS One, 2015, 10 (8): e0136694.
    [9] Rodriguez-Torres M, Allan AL. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors[J]. Clin Exp Metastasis, 2016, 33 (1): 97-113.
    [10] Qiu Y, Pu TJ, Guo P, et al. ALDH+/CD44+ cells in breast cancer are associated with worse prognosis and poor clinical outcome[J]. Exp Mol Pathol, 2016, (100): 145-150.
    [11] Moreb JS, Baker HV, Chang LJ,et al. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells[J]. Mol Cancer, 2008, 7 (87). doi:  10.1186/1476-4598-7-87.
    [12] Mizuno T, Suzuki N, Makino H,et al. Cancer stem-like cells of ovarian clear cell carcinoma are enriched in the ALDH-high population associated with an accelerated scavenging system in reactive oxygen species[J]. Gynecol Oncol, 2015, 137 (2): 299-305.
    [13] Diehn M, Cho RW, Lobo NA,et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells[J]. Nature, 2009, 458 (7239): 780-783.
    [14] Ajani JA, Wang X, Song S,et al. ALDH-1 expression levels predict response or resistance to preoperative chemoradiation in resectable esophageal cancer patients[J]. Mol Oncol, 2014, 8 (1): 142-149.
    [15] Mi JQ, Li JM, Shen ZX,et al. How to manage acute promyelocytic leukemia[J]. Leukemia, 2012, 26 (8): 1743-1751.
    [16] Parajuli B,Fishel ML,Hurley TD.Selective ALDH3A1 inhibition by benzimidazole analogues increase mafosfamide sensitivity in cancer cells[J].J Med Chem,2014,57 (2):449-461.
    [17] Bartucci M, Svensson S, Romania P, et al. Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy[J]. Cell Death Differ, 2012, 19 (5): 768-778.
    [18] Chen Y, Li D, Wang D,et al. Quiescence and attenuated DNA damage response promote survival of esophageal cancer stem cells[J]. J Cell Biochem, 2012, 113 (12): 3643-3652.
    [19] Al-Assar O, Mantoni T, Lunardi S,et al. Breast cancer stem-like cells show dominant homologous recombination due to a larger S-G2fraction[J]. Cancer Biol Ther, 2014, 11 (12): 1028-1035.
    [20] Zhang M, Behbod F, Atkinson RL, et al. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer[J]. Cancer Res, 2008, 68 (12): 4674-4682.
    [21] Bao S, Wu Q, Mclendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006, 444 (7120): 756-760.
    [22] Yin H, Glass J. The phenotypic radiation resistance of CD44+/CD24-/low breast cancer cells is mediated through the enhanced activation of ATM signaling[J]. PLoS One, 2011, 6 (9): e24080.
    [23] Teng Y, Wang X, Wang Y,et al. Wnt/beta-catenin signaling regulates cancer stem cells in lung cancer A549 cells[J]. Biochem Biophys Res Commun, 2010, 392 (3): 373-379.
    [24] Wang Y, Krivtsov AV, Sinha AU,et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML[J]. Science, 2010, 327 (5973): 1650-1653.
    [25] Martins-Neves SR, Paiva-Olivira DI, Wijers-Koster PM, et al. Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/beta-catenin signaling[J]. Cancer Lett, 2016, 370 (2): 286-295.
    [26] Catalano V, Dentice M, Ambrosio R,et al. Activated thyroid hormone promotes differentiation and chemotherapeutic sensitization of colorectal cancer stem cells by regulating Wnt and BMP4 signaling[J]. Cancer Res, 2015, 76 (5): 1237-1244.
    [27] Fang L, Zhu Q, Neuenschwander M,et al. A small-molecule antagonist of the beta-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis[J]. Cancer Res, 2015, 76 (4): 891-901.
    [28] Wang X, Ma Z, Xiao Z,et al. Chk1 knockdown confers radiosensitization in prostate cancer stem cells[J]. Oncol Rep, 2012, 28 (6): 2247-2254.
    [29] Liu YP, Yang CJ, Huang MS,et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling[J]. Cancer Res, 2013, 73 (1): 406-416.
    [30] Mcauliffe SM, Morgan SL, Wyant GA,et al. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy[J]. Proc Natl Acad Sci USA, 2012, 109 (43): 2939-2948.
    [31] Xie M, Zhang L, He CS,et al. Activation of Notch-1 enhances epithelial-mesenchymal transition in gefitinib-acquired resistant lung cancer cells[J].J Cell Biochem, 2012, 113 (5): 1501-1513.
    [32] Mabertk, Cojoc M, Peitzsch C,et al. Cancer biomarker discovery: current status and future perspectives[J]. Int J Radiat Biol, 2014, 90 (8): 659-677.
    [33] Fischer M, Yen WC, Kapoun AM,et al. Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations[J]. Cancer Res, 2011, 71 (5): 1520-1525.
    [34] Noman AS, Uddin M, Rahman MZ,et al. Overexpression of sonic hedgehog in the triple negative breast cancer: clinicopathological characteristics of high burden breast cancer patients from Bangladesh[J]. Sci Rep, 2016, 6:18830.
    [35] Xu M, Gong AH, Yang HQ, et al. Sonic hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44+ Musashi-1+ gastric cancer stem cells[J]. Cancer Lett, 2015, 369 (1):124-133.
  • [1] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 1-8. doi: 10.12206/j.issn.2097-2024.202401073
    [2] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [3] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [4] 陈春娟, 郑志新, 李骊.  平喘方联合孟鲁司特钠治疗儿童支气管哮喘患者的临床疗效观察 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202405035
    [5] 唐淑慧, 凤美娟, 薛智霞, 鲁桂华.  帕博利珠单抗治疗所致免疫相关不良反应与中医体质的相关性研究 . 药学实践与服务, 2024, 42(5): 217-222. doi: 10.12206/j.issn.2097-2024.202311029
    [6] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [7] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [8] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [9] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [10] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [11] 李想, 陆鸿远, 张明玉, 高欢, 姚东, 许子华.  米格列醇激活UCP1介导棕色脂肪对冷暴露小鼠损伤的研究 . 药学实践与服务, 2024, 42(): 1-6. doi: 10.12206/j.issn.2097-2024.202404005
    [12] 陈莹, 许子华, 胡北, 崔亚玲, 高欢, 吴琼.  通便灵胶囊治疗便秘的药效与机制研究 . 药学实践与服务, 2024, 42(): 1-7. doi: 10.12206/j.issn.2097-2024.202404008
    [13] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
    [14] 宋泽成, 陈林林, 鲁仁义, 刘梦肖, 王彦.  脓毒症治疗的研究进展 . 药学实践与服务, 2024, 42(11): 1-5. doi: 10.12206/j.issn.2097-2024.202405059
    [15] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404034
    [16] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [17] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [18] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [19] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [20] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架用于创伤性脑损伤治疗 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202406034
  • 加载中
计量
  • 文章访问数:  2997
  • HTML全文浏览量:  278
  • PDF下载量:  919
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-05
  • 修回日期:  2016-06-15

肿瘤干细胞的治疗耐受机制研究进展

doi: 10.3969/j.issn.1006-0111.2017.03.001
    基金项目:  国家青年科学基金资助项目(81502936)

摘要: 肿瘤的发病率和死亡率位居各类疾病之首,肿瘤的复发和转移是目前肿瘤治疗失败的主要原因,肿瘤治疗的失败又与肿瘤干细胞有着密切的关系。肿瘤干细胞的耐药机制一般包括以下几个方面:高表达的ABC转运蛋白介导化疗药物外排;乙醛脱氢酶的高表达与肿瘤的发病率和预后差显著相关;高效的DNA损伤修复能力;促存活通路的激活能力。笔者综合介绍肿瘤干细胞几种主要的治疗耐受机制,以期为开发新型抗肿瘤药物以及临床合理用药提供理论依据。

English Abstract

曹梦雪, 孙凡, 林厚文. 肿瘤干细胞的治疗耐受机制研究进展[J]. 药学实践与服务, 2017, 35(3): 193-196,247. doi: 10.3969/j.issn.1006-0111.2017.03.001
引用本文: 曹梦雪, 孙凡, 林厚文. 肿瘤干细胞的治疗耐受机制研究进展[J]. 药学实践与服务, 2017, 35(3): 193-196,247. doi: 10.3969/j.issn.1006-0111.2017.03.001
CAO Mengxue, SUN Fan, LIN Houwen. Advance in resistance mechanism of cancer stem cells therapy[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(3): 193-196,247. doi: 10.3969/j.issn.1006-0111.2017.03.001
Citation: CAO Mengxue, SUN Fan, LIN Houwen. Advance in resistance mechanism of cancer stem cells therapy[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(3): 193-196,247. doi: 10.3969/j.issn.1006-0111.2017.03.001
参考文献 (35)

目录

    /

    返回文章
    返回