留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

α7n型乙酰胆碱能受体在小胶质细胞中下调炎症水平的作用及其机制研究

沈越 张静静 杜晶 曹奇 刘冲 钱皎

胡叶帅, 唐晓萌, 王志君, 黄月英, 王晓君, 宋洪杰. 复方玉红栓的质量标准研究[J]. 药学实践与服务, 2022, 40(1): 76-78, 83. doi: 10.12206/j.issn.1006-0111.202103003
引用本文: 沈越, 张静静, 杜晶, 曹奇, 刘冲, 钱皎. α7n型乙酰胆碱能受体在小胶质细胞中下调炎症水平的作用及其机制研究[J]. 药学实践与服务, 2021, 39(4): 340-344, 358. doi: 10.12206/j.issn.1006-0111.202103028
HU Yeshuai, TANG Xiaomeng, WANG Zhijun, HUANG Yueying, WANG Xiaojun, SONG Hongjie. Study on quality standard of compound Yuhong suppository[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(1): 76-78, 83. doi: 10.12206/j.issn.1006-0111.202103003
Citation: SHEN Yue, ZHANG Jingjing, DU Jing, CAO Qi, LIU Chong, QIAN Jiao. The anti-inflammatory role of α7 nicotinic acetylcholine receptor in microglial cells and its mechanisms[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(4): 340-344, 358. doi: 10.12206/j.issn.1006-0111.202103028

α7n型乙酰胆碱能受体在小胶质细胞中下调炎症水平的作用及其机制研究

doi: 10.12206/j.issn.1006-0111.202103028
详细信息

The anti-inflammatory role of α7 nicotinic acetylcholine receptor in microglial cells and its mechanisms

  • 摘要:   目的  小胶质细胞在中枢神经系统的炎症相关疾病中发挥重要作用,旨在研究在炎症环境中α7 n型乙酰胆碱能受体的抗炎作用及机制。  方法  应用PNU282987激动α7 n型乙酰胆碱能受体,应用脂多糖(LPS)造成细胞的炎症模型,通过实时定量PCR技术检测BV2细胞的炎症因子IL-1β、IL-6、TNF-α及M1型巨噬细胞标记物CD68、CD86与M2型巨噬细胞标记物CD206、Arg1的mRNA水平,通过细胞免疫荧光检测M1型及M2型巨噬细胞的比例,通过Western blot技术检测自噬相关蛋白的表达。  结果  在LPS的刺激下,小胶质细胞中促炎因子IL-1β、IL-6、TNF-α的mRNA水平显著增加、M1型巨噬细胞比例显著增加、自噬水平显著上调,而应用PNU282987激动α7 n型乙酰胆碱能受体极大地降低了促炎因子IL-1β、IL-6、TNF-α的mRNA水平、增加M2型巨噬细胞比例、降低M1型巨噬细胞比例,并进一步上调小胶质细胞的自噬水平。  结论  激动α7 n型乙酰胆碱能受体可以发挥抑制小胶质细胞炎症反应的作用,其作用的实现依赖于调节小胶质细胞M1型和M2型巨噬细胞比例和上调自噬水平。
  • 复方玉红栓是长海医院特色医院制剂,处方由磺胺嘧啶、盐酸达克罗宁、苦参、槟榔、松香、紫草、白芷等中西药组成,临床使用有30多年历史。该药具有消炎[1]、止痛[2]及止血[3]等作用,用于治疗混合痔内出血、内痔水肿脱垂、单纯内痔出血等,临床疗效显著,但目前质量标准仅对2种化学药盐酸达克罗宁和磺胺嘧啶进行鉴别和含量测定,其他成分未制定质量标准,有待提升。本研究建立了苦参、松香、白芷的TLC鉴别方法,同时建立测定磺胺嘧啶和盐酸达克罗宁含量的HPLC方法,实现更好地控制本品质量、提高疗效稳定性和可靠性、增强临床使用的安全性目的。

    岛津高效液相色谱仪(包括LC-20AD泵、SPD-M20A二极管阵列检测器、CBM-20A控制器和LC solution工作站,日本岛津公司);Goodsee-20E型薄层成像系统(上海科哲生化科技有限公司);BT124S电子天平(北京赛多利斯仪器有限公司);UV2550紫外分光光度计(日本岛津公司);DL-720A 超声波清洗器(上海之信仪器有限公司);HWS24型电热恒温水浴锅(上海一恒科技有限公司);硅胶G薄层板(上海东方药品科技实业有限公司,规格10 cm×10 cm,批号:20190426);硅胶GF254薄层板(上海东方药品科技实业有限公司,规格10 cm×10 cm,批号:20141129)。

    复方玉红栓(本院自制,规格:每粒重1.4g,磺胺嘧啶25 mg、含盐酸达克罗宁5 mg;包装:7粒/盒,批号:200518、190531、190225),松香酸(批号A25F6C1,含量大于90%,上海源叶生物科技有限公司),磺胺嘧啶(批号100026-201404,含量99.7%),盐酸达克罗宁(批号100423-201102、含量99.8%),苦参碱(批号110805-201709,含量99.6%),白芷药材(批号120984-200602),苦参药材(批号121019-201604)均购自中国食品药品检定研究院;甲醇、乙腈为色谱纯,其余所用化学试剂均为分析纯,水为蒸馏水。

    2.1.1   白芷

    取本品7粒(批号200518),加乙醇200 ml,水浴加热使溶解,放冷至室温,抽滤,滤液挥至无醇味后,加0.1 mol/L盐酸溶液100 ml,加热使溶解,静置分层,取上层溶液,加0.1 mol/L氢氧化钠溶液100 ml,萃取,取下层溶液,用盐酸调节pH值至5,加石油醚(30~60 ℃)50 ml萃取2次[4],合并石油醚层挥干,残渣加乙醇2 ml使溶解,作供试品溶液;同法制备缺白芷的阴性溶液;另取白芷药材0.5 g,同法制成对照药材溶液。取上述3种溶液各10 µl,分别点于同一硅胶G薄层板上,以石油醚(60~90 ℃)-乙醚(6∶5)为展开剂,展开,取出晾干,置紫外灯(365 nm)下检视。结果供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色斑点,阴性对照在此相应位置无斑点。薄层色谱图见图1A

    图  1  复方玉红栓的TLC图
    a1.白芷阴性对照溶液;a2.白芷供试品溶液;a3.白芷对照药材溶液;b1.松香供试品溶液;b2.松香阴性对照溶液;b3.松香酸对照品溶液;c1.苦参供试品溶液;c2.苦参对照药材溶液;c3.苦参碱对照品溶液;c4.苦参阴性对照溶液。
    2.1.2   松香

    取本品1粒(批号200518),加乙醇100 ml[5],水浴加热使溶解,冷藏1 h,取出过滤,取滤液挥干,残渣加乙醇2 ml使溶解,取上清液作供试品溶液;同法制备缺松香的阴性溶液;另取松香酸对照品适量,加乙醇溶解制成每1 ml含松香酸1 mg的溶液,作对照品溶液。取上述3种溶液各10 µl,分别点于同一硅胶GF254薄层板上,以石油醚(60~90 ℃)-乙酸乙酯-冰醋酸(8∶2∶0.1)为展开剂[6],展开,取出晾干,置紫外灯(254 nm)下检视。结果供试品色谱中,在与对照品色谱相应的位置上,显相同颜色斑点,阴性对照在此相应位置无斑点。薄层色谱图见图1B

    2.1.3   苦参

    取本品14粒(批号200518),加0.1mol/L盐酸溶液100 ml,水浴加热使溶解,分取下层溶液,同法操作2次合并下层溶液,加2 mol/L氢氧化钠溶液调节pH值至9,加三氯甲烷50 ml萃取2次[7],取三氯甲烷层挥干,残渣加乙醇2 ml使其溶解,作供试品溶液;同法制备缺苦参的阴性溶液;另取苦参药材1 g,同法制成对照药材溶液;取苦参碱适量,加乙醇溶解制成每1 ml含苦参碱0.5 mg的溶液,作对照品溶液。取上述4种溶液各10 μl,分别点于同一硅胶G薄层板上,以环己烷-乙酸乙酯-二乙胺(5∶4∶0.5)为展开剂,展开,取出晾干,喷以稀碘化铋钾试液显色[8],置日光灯下检视。结果供试品色谱中,在与对照药材和对照品色谱相应位置上,显相同颜色斑点,阴性对照在此相应位置无斑点。薄层色谱图见图1C

    2.2.1   色谱条件

    SHIMADZU C18柱(150 mm×4.6 mm,5 μm);流动相为甲醇(A)-0.02 mol/L磷酸二氢钾溶液(B),用磷酸调节pH值至3.3,梯度洗脱(0~6.0 min,25 % B;6.0~25.0 min,50 % B;25.0~30.0 min,25 % B);流速:1.0 ml/min;柱温:室温;检测波长:280 nm;进样量:20 μl。

    2.2.2   溶液制备

    (1)对照品溶液:取磺胺嘧啶对照品适量,精密称定,加甲醇制成每1 ml含磺胺嘧啶0.25 mg的溶液,作为储备液1;取盐酸达克罗宁对照品适量,精密称定,加甲醇制成每1 ml含盐酸达克罗宁0.25 mg的溶液,作为储备液2;精密量取储备液1和储备液2适量,加流动相稀释制成每1 ml含磺胺嘧啶50 μg、盐酸达克罗宁10 μg的混合对照品溶液。

    (2)供试品溶液:取本品10粒(批号200518),切碎,取约0.7 g(相当于磺胺嘧啶12.5 mg,盐酸达克罗宁2.5mg),精密称定,置50 ml量瓶中,加甲醇25 ml,90 ℃水浴加热5 min,放冷,加甲醇稀释至刻度,摇匀,冷藏静置1 h,滤过,取续滤液放至室温,再精密量取续滤液5 ml,置25 ml量瓶中,用流动相稀释至刻度、摇匀,作供试品溶液。

    (3)阴性样品溶液:根据处方制备不含磺胺嘧啶和盐酸达克罗宁的阴性样品,再按(2)项下方法制成阴性对照溶液。

    2.2.3   专属性试验

    分别取“2.2.2”项下混合对照品溶液、供试品溶液和阴性对照液各20 μl注入液相色谱仪,按“2.2.1”项下色谱条件进样测定,记录色谱图,结果见图2。结果表明,在混合对照品色谱相应位置上,供试品溶液色谱图中均具有相同保留时间的色谱峰,而阴性对照液在此处均无吸收峰,表明检验方法的专属性良好。

    图  2  复方玉红栓HPLC色谱图
    A.阴性对照溶液;B.供试品溶液C.混合对照品溶液;1.磺胺嘧啶;2.盐酸达克罗宁。
    2.2.4   线性关系考察

    分别精密量取“2.2.2”项下(1)的储备液1和储备液2适量,用流动相稀释,配制磺胺嘧啶系列浓度为12.40、24.80、49.60、74.40、99.20 µg/ml,盐酸达克罗系列浓度2.56、5.12、10.24、15.36、20.48 µg/ml的混合对照品溶液。按“2.2.1”项下色谱条件,进样20 µl,记录峰面积,以对照品浓度(C)为横坐标,峰面积(A)为纵坐标,进行线性回归分析,得到磺胺嘧啶和盐酸达克罗宁的回归方程分别为A盐酸达克罗宁=77680 c+44018(r=0.999 9),线性范围2.56~20.48 µg/ml;A磺胺嘧啶=72528 C+2862.9(r=0.999 9),线性范围12.40~99.20 µg/ml。结果表明磺胺嘧啶和盐酸达克罗宁在相应范围内线性关系良好。

    2.2.5   精密度试验

    精密吸取"2.2.2"项下(1)的混合对照品溶液20 µl,按"2.2.1"项下色谱条件重复进样6次;同法操作,每天进样1次,共进样6 d,分别记录,按峰面积计算得磺胺嘧啶和盐酸达克罗宁的日内精密度分别为0.07 %和0.58 %(n=6),日间精密度分别为1.60 %和1.65 %(n=6)。结果表明仪器精密度良好。

    2.2.6   稳定性试验

    分别取同一供试品溶液(批号200518),在0、1、2、4、8、12 h按"2.2.1"项下色谱条件进样,按峰面积计算得磺胺嘧啶和盐酸达克罗宁的RSD分别为0.74 %和0.92 %(n=6),表明供试品溶液在12 h内稳定。

    2.2.7   重复性试验

    取本品(批号200518),按“2.2.2”项下(2)的方法制备供试品溶液6份,按“2.2.1”项下色谱条件进样,记录峰面积,计算磺胺嘧啶和盐酸达克罗宁的RSD分别为1.90 %和1.58 %(n=6),表明该方法重复性良好。

    2.2.8   回收率试验

    按处方工艺制备磺胺嘧啶和盐酸达克罗宁标示量为80%、100%、120%的3种样品,按“2.2.2”项下(2)的方法制备供试品溶液各3份,并按“2.2.1”项下条件测定,计算平均回收率,结果表明磺胺嘧啶和盐酸达克罗宁的平均回收率分别为(99.10±0.48)%、(99.54±0.68)%(n=9)。

    2.2.9   含量测定

      取3个批号样品,分别按“2.2.2”项下(2)的处理方法制备供试品溶液,按“2.2.1”项下色谱条件测定峰面积,代入回归方程计算含量,结果见表1

    表  1  磺胺嘧啶和盐酸达克罗宁的含量测定结果($ \overline x $±s, n=3)
    批号磺胺嘧啶含量(mg/粒)盐酸达克罗宁含量(mg/粒)
    20051824.62±0.504.88±1.02
    19053124.55±0.784.97±0.72
    19022524.18±0.414.68±0.48
    下载: 导出CSV 
    | 显示表格

    复方玉红栓是以混合脂肪酸甘油酯作为油脂性基质的栓剂,中药成分在处方中含量少,以原药材总量计仅为4 %,油脂性基质占比90 %,药物受基质影响很大,若操作过程中油脂性基质未完全除去,中药有效成分提取不完全,实验时易发生斑点拖尾甚至没有斑点显现,严重影响鉴别的专属性和灵敏度,所以在操作过程中去除干扰的油脂性基质和选择合适提取方法至关重要[9]。根据待测药材的成分特性,本研究在参考文献的基础上建立了白芷、松香、苦参3种中药材的提取和TLC鉴别方法,所建立的方法可以用于复方玉红栓制剂中3种药材的鉴别。本研究还尝试建立紫草和槟榔的TLC鉴别方法,但两者在处方中所占比例更少,大量混合脂肪酸甘油酯严重干扰两味药材的提取,因此尚未建立它们特征性的鉴别方法。

    目前尚未见有同时测定磺胺嘧啶和盐酸达克罗宁的研究报道。本研究采用甲醇-0.02 mol/L磷酸二氢钾溶液(用磷酸调节pH值至3.3)为流动相,建立了梯度洗脱条件,同时测定两者的含量。对色谱条件考察时发现,随着0.02 mol/L磷酸二氢钾溶液比例增加,盐酸达克罗宁出峰时间提前,但峰形不对称影响测定准确性,经过摸索最终确定本实验洗脱比例[10]。研究中考察了两种成分的提取条件,发现不同的提取温度和时间影响提取效率,盐酸达克罗宁不稳定[11],遇热易发生降解,本实验摸索了水浴温度90 ℃,提取5 min的条件,既保证了有效成分提取完全又防止了盐酸达克罗宁的降解。

    本研究首次建立了松香、苦参、和白芷的薄层色谱鉴别方法,此方法操作性强,斑点显色清晰;用HPLC法同时测定磺胺嘧啶和盐酸达克罗宁,此方法的准确性、重现性好,符合快速测定要求。本研究为该制剂全面控制药品质量和临床疗效提供了重要依据。

  • 图  1  激动 α7 n型乙酰胆碱能受体抑制BV2细胞的促炎因子表达 (n=3~5)

    *P<0.05, **P<0.01, 与对照组比较;#P<0.05,##P<0.01,与模型组比较。

    图  2  激动α7 n型乙酰胆碱能受体对BV2细胞M1型与M2型巨噬细胞标记物的mRNA水平影响 (n=3~5)

    *P<0.05, **P<0.01, 与对照组比较;#P<0.05,与模型组比较。

    图  3  激动α7 n型乙酰胆碱能受体对M1型小胶质细胞比例的影响

    图  4  激动α7 n型乙酰胆碱能受体对M2型小胶质细胞比例的影响

    图  5  激动α7nAChR上调BV2细胞自噬水平 (n=3)

    A.蛋白图;B.蛋白定量统计图**P<0.01,与对照组比较;#P<0.05, ##P<0.01,与模型组比较。

    表  1  实时定量PCR引物序列

    引物名称引物序列
    IL-1β (上游)5′-CTCGTGCTGTCGGACCCCAT-3′
    IL-1β (下游)5′- AGTGTTCGTCTCGTGTTCGGAC-3′
    IL-6 (上游)5′-TAGTCCTTCCTACCCCAATTTCC-3′
    IL-6 (下游)5′-TTGGTCCTTAGCCACTCCTTC-3′
    TNF-α (上游)5′-AAGCCTGTAGCCCACGTCGTA-3′
    TNF-α (下游)5′-GGCACCACTAGTTGGTTGTCTTTG-3′
    GAPDH (上游)5′-GTATGACTCCACTCACGGCAAA-3′
    GAPDH (下游)5′-GGTCTCGCTCCTGGAAGATG-3′
    下载: 导出CSV
  • [1] SHE H, HE Y, ZHAO Y, et al. Autophagy in inflammation: the p38α MAPK-ULK1 axis[J]. Macrophage,2018,4:1629.
    [2] LI Q S, CHEN L, LIU X W, et al. Pterostilbene inhibits amyloid-β-induced neuroinflammation in a microglia cell line by inactivating the NLRP3/caspase-1 inflammasome pathway[J]. J Cell Biochem,2018,119(8):7053-7062. doi:  10.1002/jcb.27023
    [3] GARRISON A M, PARROTT J M, TUÑON A, et al. Kynurenine pathway metabolic balance influences microglia activity: Targeting kynurenine monooxygenase to dampen neuroinflammation[J]. Psychoneuroendocrinology,2018,94:1-10. doi:  10.1016/j.psyneuen.2018.04.019
    [4] KABBANI N, NICHOLS R A. Beyond the channel: metabotropic signaling by nicotinic receptors[J]. Trends Pharmacol Sci,2018,39(4):354-366. doi:  10.1016/j.tips.2018.01.002
    [5] HONE A J, MCINTOSH J M. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain[J]. FEBS Lett,2018,592(7):1045-1062. doi:  10.1002/1873-3468.12884
    [6] HOOVER D B. Cholinergic modulation of the immune system presents new approaches for treating inflammation[J]. Pharmacol Ther,2017,179:1-16. doi:  10.1016/j.pharmthera.2017.05.002
    [7] CHU F, SHI M, ZHENG C, et al. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis[J]. J Neuroimmunol,2018,318:1-7. doi:  10.1016/j.jneuroim.2018.02.015
    [8] L'EPISCOPO F, TIROLO C, SERAPIDE M F, et al. Microglia polarization, gene-environment interactions and wnt/β-catenin signaling: emerging roles of Glia-neuron and Glia-stem/neuroprogenitor crosstalk for dopaminergic neurorestoration in aged parkinsonian brain[J]. Front Aging Neurosci,2018,10:12. doi:  10.3389/fnagi.2018.00012
    [9] TAKEMURA G, KANAMORI H, OKADA H, et al. Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration[J]. Heart Fail Rev,2018,23(5):759-772. doi:  10.1007/s10741-018-9708-x
    [10] SHAO B Z, HAN B Z, ZENG Y X, et al. The roles of macrophage autophagy in atherosclerosis[J]. Acta Pharmacol Sin,2016,37(2):150-156. doi:  10.1038/aps.2015.87
    [11] KE P, SHAO B Z, XU Z Q, et al. Intestinal autophagy and its pharmacological control in inflammatory bowel disease[J]. Front Immunol,2016,7:695.
    [12] KE P, SHAO B Z, XU Z Q, et al. Activating α7 nicotinic acetylcholine receptor inhibits NLRP3 inflammasome through regulation of β-arrestin-1[J]. CNS Neurosci Ther,2017,23(11):875-884. doi:  10.1111/cns.12758
  • [1] 曹奇, 张嘉宝, 王培.  基于无监督自动降维分析与手动圈门联用的骨骼肌髓系细胞多色流式分析方法 . 药学实践与服务, 2025, 43(3): 118-122. doi: 10.12206/j.issn.2097-2024.202404077
    [2] 赵全公, 王国坤, 徐志云.  虾青素通过激活Nrf2/HO-1通路抑制瓣膜间质细胞钙化 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202412057
    [3] 杨金润, 黎翔, 孙旸.  ORM1促肝细胞增殖的作用及其机制探索 . 药学实践与服务, 2025, 43(5): 1-6. doi: 10.12206/j.issn.2097-2024.202410014
    [4] 宋泽成, 马闪闪, 胡巧灵, 仲华, 王彦.  小檗碱与氟康唑合用抗氟康唑耐受白念珠菌的研究 . 药学实践与服务, 2025, 43(2): 87-91. doi: 10.12206/j.issn.2097-2024.202409047
    [5] 游飘雪, 陈兰, 施艺玮, 王辉, 晁亮, 洪战英.  脑胶质瘤微流控芯片模型的构建及中药半枝莲药效评价应用研究 . 药学实践与服务, 2025, 43(2): 59-66. doi: 10.12206/j.issn.2097-2024.202409034
    [6] 曹金发, 钟玲, 何苗, 田泾.  炎症性肠病合并心房颤动患者的用药分析与监护 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202403004
    [7] 竺东杰, 贺新征, 邹杰, 余史丹, 李红霞.  雷公藤甲素对大鼠脑缺血再灌注损伤的影响及机制研究 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202311021
    [8] 张俊丽, 李媛媛, 尹静, 杨鸿源, 白耀武.  咪达唑仑调节PINK1/PARKIN信号通路对缺血性脑卒中大鼠神经元损伤的影响 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202405024
    [9] 周文艳, 胡珊珊, 张万年, 庄春林.  Keap1-Nrf2通路在炎症疾病中的研究进展 . 药学实践与服务, 2025, 43(3): 97-108, 116. doi: 10.12206/j.issn.2097-2024.202405013
    [10] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [11] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [12] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [13] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [14] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [15] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [16] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [17] 岳春华, 贲永光, 王海桥.  基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制 . 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
    [18] 宋泽成, 陈林林, 鲁仁义, 刘梦肖, 王彦.  脓毒症治疗的研究进展 . 药学实践与服务, 2024, 42(11): 457-460, 502. doi: 10.12206/j.issn.2097-2024.202405059
    [19] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
    [20] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  5603
  • HTML全文浏览量:  2691
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-05-13
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2021-07-25

α7n型乙酰胆碱能受体在小胶质细胞中下调炎症水平的作用及其机制研究

doi: 10.12206/j.issn.1006-0111.202103028
    作者简介:

    沈 越,硕士研究生,Email:flyingsy@smmu.edu.cn

    通讯作者: 刘 冲,副教授,研究方向:心脑血管药理,Email:wanlc2004@aliyun.com钱 皎,副主任药师,研究方向:临床药学,Email:qianjiaosmmu@163.com
  • 中图分类号: R743.3

摘要:   目的  小胶质细胞在中枢神经系统的炎症相关疾病中发挥重要作用,旨在研究在炎症环境中α7 n型乙酰胆碱能受体的抗炎作用及机制。  方法  应用PNU282987激动α7 n型乙酰胆碱能受体,应用脂多糖(LPS)造成细胞的炎症模型,通过实时定量PCR技术检测BV2细胞的炎症因子IL-1β、IL-6、TNF-α及M1型巨噬细胞标记物CD68、CD86与M2型巨噬细胞标记物CD206、Arg1的mRNA水平,通过细胞免疫荧光检测M1型及M2型巨噬细胞的比例,通过Western blot技术检测自噬相关蛋白的表达。  结果  在LPS的刺激下,小胶质细胞中促炎因子IL-1β、IL-6、TNF-α的mRNA水平显著增加、M1型巨噬细胞比例显著增加、自噬水平显著上调,而应用PNU282987激动α7 n型乙酰胆碱能受体极大地降低了促炎因子IL-1β、IL-6、TNF-α的mRNA水平、增加M2型巨噬细胞比例、降低M1型巨噬细胞比例,并进一步上调小胶质细胞的自噬水平。  结论  激动α7 n型乙酰胆碱能受体可以发挥抑制小胶质细胞炎症反应的作用,其作用的实现依赖于调节小胶质细胞M1型和M2型巨噬细胞比例和上调自噬水平。

English Abstract

胡叶帅, 唐晓萌, 王志君, 黄月英, 王晓君, 宋洪杰. 复方玉红栓的质量标准研究[J]. 药学实践与服务, 2022, 40(1): 76-78, 83. doi: 10.12206/j.issn.1006-0111.202103003
引用本文: 沈越, 张静静, 杜晶, 曹奇, 刘冲, 钱皎. α7n型乙酰胆碱能受体在小胶质细胞中下调炎症水平的作用及其机制研究[J]. 药学实践与服务, 2021, 39(4): 340-344, 358. doi: 10.12206/j.issn.1006-0111.202103028
HU Yeshuai, TANG Xiaomeng, WANG Zhijun, HUANG Yueying, WANG Xiaojun, SONG Hongjie. Study on quality standard of compound Yuhong suppository[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(1): 76-78, 83. doi: 10.12206/j.issn.1006-0111.202103003
Citation: SHEN Yue, ZHANG Jingjing, DU Jing, CAO Qi, LIU Chong, QIAN Jiao. The anti-inflammatory role of α7 nicotinic acetylcholine receptor in microglial cells and its mechanisms[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(4): 340-344, 358. doi: 10.12206/j.issn.1006-0111.202103028
  • 小胶质细胞是一种神经胶质细胞,是存在于中枢神经系统中的炎症免疫相关细胞,相当于中枢神经器官(脑和脊髓)中的巨噬细胞[1]。小胶质细胞的生理作用是清除中枢神经系统中受损的神经组织、通过血脑屏障入侵中枢的感染源及异物等。在病理状态下,已有多项研究表明,小胶质细胞在多种中枢神经系统疾病的发生发展中发挥重要的作用,包括缺血性脑梗、多发性硬化、神经退行性疾病等[2-3]。因此,抑制小胶质细胞的促炎反应对多种疾病的治疗具有重要意义。

    α7 n型乙酰胆碱能受体(α7 nicotinic acetylcholine receptor, α7nAChR)是一种n型乙酰胆碱能受体亚型,从属于配体门控的离子通道受体家族[4]。从传统意义上来说,α7 n型乙酰胆碱能受体位于神经肌肉接头后膜,接受传出神经末梢突触释放的化学递质(Ach)的作用,使得电信号继续传播。然而,近年来越来越多的研究表明,激动 α7 n型乙酰胆碱能受体可以参与胆碱能抗炎通路的激活,进而在多种病理状态下发挥抗炎作用[5]。目前研究已表明,α7 n型乙酰胆碱能受体介导的胆碱能抗炎通路在多种疾病的发生发展中发挥抑制作用[6]

    与其他巨噬细胞一样,小胶质细胞也分为经典活化的M1型巨噬细胞和选择性活化的M2型巨噬细胞[7]。一般来讲,M1型巨噬细胞主要分泌促炎因子,如IL-1β、IL-6、TNF-α、IL-12、IL-18等;而M2型巨噬细胞主要分泌抗炎因子,如IL-4、IL-10、IL-13等[8]。因此,在炎症免疫相关疾病中,降低M1/M2细胞的比例成为重要的治疗手段。

    自噬是生物体的一种重要的代谢机制,利用溶酶体降解自身受损细胞器和大分子物质的进化上高度保守的过程[9]。自噬通常分为大自噬、小自噬和分子伴侣介导的自噬,由于大自噬的研究相对较多,在疾病中的作用也较为突出,因此,本研究主要讨论大自噬的作用(后续将描述为“自噬”)。在自噬过程中,自噬小体形成,包裹细胞组分或入侵的病原体,与溶酶体融合形成自噬溶酶体,最后自噬溶酶体将包裹的底物降解并释放入胞浆供细胞重新利用[10]。已有报道,自噬具有抗炎的作用[11]

    由此,本课题组探究在小胶质细胞中,α7 n型乙酰胆碱能受体是否具有抗炎的作用,并且探究这一过程是否有调节M1型与M2型巨噬细胞的比例与诱导自噬过程的参与。

    • 75%乙醇、异丙醇、甲醇、吐温-80、20×PBS、BSA、Tris碱、多聚甲醛、引物、LPS、DMEM高糖培养基、抗LC3抗体、抗Beclin-1抗体、抗p62/SQSTM1抗体、荧光二抗、DAPI染料、氯仿、细胞/组织蛋白裂解液、蛋白酶抑制剂(三联装)、甘氨酸、30%聚丙烯酰胺溶液、过硫酸铵、TEMED、1.5 mol/L Tris(pH 8.8)、1.5 mol/L Tris(pH 6.8)。JA2003电子天平(上海天平仪器厂);电热恒温水浴槽DK-8D(上海一恒科学仪器有限公司);STS-8A转移脱色摇床(上海琪特分析仪器有限公司);离心管(Corning公司);移液枪(Eppendorf公司);7500RT-PCR仪器(Applied Biosystems公司);超纯水仪(Millipore公司);荧光显微镜IX71(日本Olympus公司);锥形瓶;激光共聚焦显微镜(日本Olympus公司);酶标仪(瑞士Tacan公司);细胞操作超净台(苏州净化设备有限公司);Odyssey扫膜仪(LI-COR公司)。

    • BV2小胶质细胞系(美国ATCC细胞库)。细胞常规培养加入10% FBS的DMEM高糖培养基中,培养在37°C、5% CO2的培养箱中。在实验中,我们提前10 min加入PNU282987孵育,后加入LPS(1 000 ng/ml)刺激BV2细胞12 h。

    • 提取细胞总RNA,逆转录成cDNA,使用cDNA进行实时定量PCR检测,引物由上海生工生物合成,序列见表1

      表 1  实时定量PCR引物序列

      引物名称引物序列
      IL-1β (上游)5′-CTCGTGCTGTCGGACCCCAT-3′
      IL-1β (下游)5′- AGTGTTCGTCTCGTGTTCGGAC-3′
      IL-6 (上游)5′-TAGTCCTTCCTACCCCAATTTCC-3′
      IL-6 (下游)5′-TTGGTCCTTAGCCACTCCTTC-3′
      TNF-α (上游)5′-AAGCCTGTAGCCCACGTCGTA-3′
      TNF-α (下游)5′-GGCACCACTAGTTGGTTGTCTTTG-3′
      GAPDH (上游)5′-GTATGACTCCACTCACGGCAAA-3′
      GAPDH (下游)5′-GGTCTCGCTCCTGGAAGATG-3′

      按规范程序设置PCR仪,所得CT值按照2–∆∆CT公式计算。

    • 提取细胞/组织蛋白,BCA法测定蛋白浓度,经加样、跑胶、转膜等步骤后,PVDF膜孵育牛奶封闭3 h,后分别孵育一抗(4 ℃过夜)、二抗(35 min,避光),用PBST液进行漂洗后,置于Odyssey扫膜仪中获取Western blot图像。

    • 取出经过处理后的BV2细胞,弃掉培养基,加入PBS液润洗,用4%多聚甲醛室温孵育固定10 min,用PBS液洗涤5 min×3次,后用0.1% Triton X-100室温孵育5 min,用PBS洗涤5 min×3次;用山羊血清封闭室温10 min,后孵育一抗(室温1 h)、二抗(37 ℃,30 min,避光),加入DAPI染核3 min,后用PBS洗涤5 min×3次,加入抗荧光淬灭剂后于激光共聚焦显微镜拍照。

    • 实验数据以($\bar{x}\pm s$)表示,数据处理过程中,多组间比较用单因素方差分析(analysis of variance,ANOVA)并Bonferroni检验,P<0.05时认为差异具有统计学意义。

    • 首先,我们探究在小胶质细胞中,α7 n型乙酰胆碱能受体对炎症反应水平的影响。提前10 min加入PNU282987(10 μmol/L)孵育,后加入LPS(1 000 ng/ml)刺激BV2细胞,刺激12 h后,通过实时定量PCR技术检测BV2细胞的促炎因子IL-1β、IL-6、TNF-α水平(图1)。

      图  1  激动 α7 n型乙酰胆碱能受体抑制BV2细胞的促炎因子表达 (n=3~5)

      图1中可以看出,在LPS的刺激下,小胶质细胞中促炎因子IL-1β、IL-6、TNF-α的mRNA水平显著增加,而应用PNU282987激动α7nAChR极大地降低了促炎因子IL-1β、IL-6、TNF-α的mRNA水平。由此可以看出,炎症环境中激动α7nAChR在小胶质细胞中的抗炎作用。

    • 炎症环境中激动α7 n型乙酰胆碱能受体在小胶质细胞中的抗炎机制。提前10 min加入PNU282987(10 μmol/L)孵育,后加入LPS(1 000 ng/ml)刺激BV2细胞,刺激12 h后,通过实时定量PCR技术检测BV2细胞的M1型巨噬细胞标记物CD68、CD86与M2型巨噬细胞标记物CD206、Arg1的mRNA水平(图2)。

      图  2  激动α7 n型乙酰胆碱能受体对BV2细胞M1型与M2型巨噬细胞标记物的mRNA水平影响 (n=3~5)

      图  3  激动α7 n型乙酰胆碱能受体对M1型小胶质细胞比例的影响

      图2可以看出,在LPS的刺激下,小胶质细胞中M1型巨噬细胞标记物CD68、CD86的mRNA水平显著增加,而应用PNU282987激动α7 n型乙酰胆碱能受体极大地降低了巨噬细胞标记物CD68、CD86的mRNA水平并增加了M2型巨噬细胞标记物CD206、Arg1的mRNA水平。

      对BV2细胞进行同样的处理,而后通过细胞免疫荧光技术检测M1型巨噬细胞比例(CD45+、CD68+细胞,图3)与M2型巨噬细胞比例(CD45+、CD206+细胞,图4)。

      图  4  激动α7 n型乙酰胆碱能受体对M2型小胶质细胞比例的影响

      图3图4可以看出,在LPS的刺激下,小胶质细胞中M1型巨噬细胞比例显著增加,而应用PNU282987激动α7 n型乙酰胆碱能受体极大地降低了M1型巨噬细胞的比例并增加了M2型巨噬细胞的比例。

      综合图24的结果可以发现,炎症环境中激动α7 n型乙酰胆碱能受体可以调节小胶质细胞M1型与M2型比例,增加M2型巨噬细胞的比例并降低M1型巨噬细胞的比例。

    • 最后,我们探究炎症环境中激动α7 n型乙酰胆碱能受体的抗炎作用是否有自噬过程的参与。选用不同剂量的PNU282987,提前10 min加入PNU282987(0.1、1、10 μmol/L)孵育,后加入LPS(1 000 ng/ml)刺激BV2细胞,刺激12 h后,通过Western blot技术检测BV2细胞中的自噬相关蛋白Beclin 1、LC3-II/I比例、p62/SQSTM1表达水平(图5)。

      图  5  激动α7nAChR上调BV2细胞自噬水平 (n=3)

      图5中可以看出,在LPS的刺激下,小胶质细胞中自噬水平显著增加,而应用PNU282987激动α7 n型乙酰胆碱能受体进一步增加了自噬水平。由此可以看出,炎症环境中激动α7 n型乙酰胆碱能受体可以上调BV2细胞的自噬水平。

    • α7 n型乙酰胆碱能受体介导的胆碱能抗炎通路在多种炎症免疫相关疾病中发挥重要的调节作用。课题组的前期研究发现,在小鼠多发性硬化模型中,激动α7 n型乙酰胆碱能受体可以发挥重要的抑制小胶质细胞炎症的作用[12]。本研究在细胞水平应用小胶质细胞系BV2细胞,再次证明了α7 n型乙酰胆碱能受体的抗小胶质细胞炎症的作用。

      对于在小胶质细胞中α7 n型乙酰胆碱能受体抗炎作用的机制,本研究首次表明,其抗炎作用的实现有调节小胶质细胞M1型和M2型巨噬细胞比例的参与,即激动α7 n型乙酰胆碱能受体可以上调具有抗炎作用的M2型巨噬细胞并且下调M1型巨噬细胞的比例。这一结论为利用α7 n型乙酰胆碱能受体激动剂作用治疗相关疾病的药物提供了重要的理论依据。此外,我们也探讨了自噬这一重要的抗炎机制是否参与了这一过程。通过细胞实验得到了肯定的答案,与以往研究相一致,我们证明了上调小胶质细胞的自噬水平发挥抗炎作用。

      由此我们得出,激动α7 n型乙酰胆碱能受体可以发挥抑制小胶质细胞炎症反应的作用,其作用的实现依赖于调节小胶质细胞M1型和M2型巨噬细胞比例和上调自噬水平。下一步,我们将通过单核巨噬细胞特异性敲除α7 n型乙酰胆碱能受体的小鼠进行研究,进一步验证激动α7 n型乙酰胆碱能受体是否可以通过调节巨噬细胞比例和自噬水平,进而抑制小胶质细胞炎症发挥作用,使实验结果更具说服力。我们相信,这一研究将为开发利用新的胆碱能抗炎药物提供新的思路。

参考文献 (12)

目录

/

返回文章
返回