-
高尿酸血症是一种威胁人类健康的常见代谢性疾病。血液中尿酸水平偏高,会导致关节及肾脏沉积尿酸盐晶体,是痛风性关节炎、急性尿酸肾病、心血管及肾脏疾病,特别是高血压的重要危险因子[1]。虽然抗高尿酸血症药物在治疗高尿酸血症和痛风方面已有进展,但作为常用的黄嘌呤氧化酶(XOD)抑制剂,别嘌醇可致严重的过敏(如轻度出疹)和粒细胞缺乏症,并会损害嘧啶代谢,从而加剧肾脏毒性。目前,中医药在抗高尿酸疾病中,有很好的临床疗效,受到研究者的青睐[2]。
萆薢降酸方是我院使用多年的协定处方,临床效果良好,深受患者认可,其治疗高尿酸血症、痛风和刺激性关节炎的疗效而被广泛应用。由萆薢、土茯苓、金钱草、泽泻、苍术等五味中药组成,具有利湿健脾,泄浊除痹的功效,临床上用于“腰痛” “石淋” “痹证”等病证,能消除代谢紊乱所致尿酸产生过多或排泄减少。方中萆薢具有利湿去浊、祛风除痹的功效,为“君药”;土茯苓具有清热解毒、健脾祛湿的功效,金钱草具有利湿退黄、利尿通淋、解毒消肿的功效,辅助“君药”排除尿酸,为“臣药”;泽泻具有利水渗湿、泄热、化浊降脂的功效,苍术具有燥湿健脾、祛风散寒的功效,辅佐“君臣”利湿去浊。
萆薢降酸方在降尿酸过程中的作用机制尚不清楚。本研究旨在探讨萆薢降酸方对实验性高尿酸血症小鼠血氧活性和尿酸排泄的影响。
-
实验用雄性ICR健康小鼠,体重约18~22 g,购自武汉大学动物实验中心,由武汉大学动物护理及使用委员会批准(编号:20121012)。
-
尿酸(UA,美国Sigma公司);肌酐(Cr)、尿素氮(BUN)测定试剂盒(美国BioAssay Systems);黄嘌呤氧化酶(XOD)测定试剂盒(南京建成生物工程研究所);RNA提取试剂盒(成都福际生物);逆转录试剂盒(日本Takara);Mill-iQ型纯水系统(美国Millipore);3K30高速低温离心机(德国Sigma);InfiniteM200型酶标仪(瑞士TECAN);7500型实时荧光定量PCR仪(美国Applied Biosystems)
-
萆薢、土茯苓、金钱草、泽泻、苍术(均购自安徽亳州中药材有限公司);别嘌醇片(江苏方强制药厂,国药准字H20033683);氧嗪酸钾(美国Sigma-aldrich,规格:25g/瓶)。
-
将ICR小鼠随机分为6组,每组10只。①阴性对照组:给予正常饲料喂养;②模型组:给予氧嗪酸钾(250 mg/kg,溶于5%CMC-Na溶液);③阳性对照组:给予氧嗪酸钾(同模型组)+别嘌醇(5 mg/kg);④高剂量组:给予氧嗪酸钾(同模型组)+药物(880 mg/kg);⑤中剂量组:给予氧嗪酸钾(同模型组)+药物(440 mg/kg);⑥低剂量组:给予氧嗪酸钾(同模型组)+药物(220mg/kg)。除阴性对照组外,其余各组按上述剂量灌胃给药,灌胃体积0.5ml/100g,每天1次,连续10 d。
-
经过连续10 d给药后,眼眶取血(取血前12 h禁食禁水),以3500r/min转速,离心20 min,分离血清;代谢笼收集24 h尿液,记录尿液体积,采用市售试剂盒以比色法测定血清及尿液中的黄嘌呤氧化酶(XOD)、尿酸(UA)、肌酐(Cr)及尿素氮(BUN)水平。
-
将肾组织匀浆,使用样品缓冲液裂解细胞,离心后收集上清液。样品用10%聚丙烯酰胺凝胶电泳分离,转移到硝化纤维素膜上。使用尿酸转运蛋白1(URAT1)、有机阴离子转运蛋白1(OAT1)抗体孵育后,使用增强型化学发光检测试剂盒检测。使用Lab works 软件(GelPro 4.0)对条带光密度进行量化。
应用SPSS 16.0统计软件包对所有数据进行统计分析,计量资料以(
$\bar x $ ±s)表示,两组间均数比较采用t检验,多组间均数比较采用单因素方差分析,以 P<0. 05为差异有统计学意义。 -
如表1所示,模型组大鼠经灌胃氧嗪酸钾后,UA水平明显高于阴性组(P<0.05),表明高尿酸血症大鼠模型造模成功。连续给药治疗10 d后,与模型组比较,萆薢降酸方高、中、低剂量组血清尿酸水平显著降低(P<0.05)。虽然萆薢降酸方药物组小鼠血清尿酸水平均高于阳性组小鼠,但其尿酸排泄量呈剂量依赖性增加;与模型组比较,血清肌酐和尿素氮水平均有明显的降低(P<0.05),萆薢降酸方药物组对血清肌酐水平的改善作用约为模型组的2~3倍。如表2所示,与模型组比较,高剂量组萆薢降酸方对高尿酸血症模型小鼠中血清和肝脏氧化酶活性也有显著影响(P< 0.05)。
表 1 萆薢降酸方对高尿酸血症小鼠尿酸、肌酐及尿素氮的影响(n=10)
组别 剂量(mg/kg) 血清UA(mg/L) 尿液UA(mg/L) 血清Cr(µmol/L) 尿液Cr(mmol/L) 血清BUN (mmol/L) 阴性组 − 1.42±0.18 35.25±5.73 0.29±0.11 41.56±3.42 7.58±0.85 模型组 − 6.13±0.76* 12.68±4.79* 0.95±0.38* 17.33±4.68* 16.43±1.13* 阳性组 5 1.85±0.37 19.26±5.28 0.34±0.22 24.26±3.32 9.37±1.14 低剂量组 220 3.73±1.1# 19.79±6.21# 0.56±0.21# 18.13±2.79 13.38±0.68# 中剂量组 440 2.85±0.91# 28.65±7.55# 0.45±0.21# 26.72±3.02# 11.37±0.74# 高剂量组 880 2.04±0.64# 38.34±8.23# 0.35±0.18# 34.38±1.98# 8.83±0.71# 注:*P < 0.05,与阴性组比较;#P< 0.05,与模型组比较 表 2 萆薢降酸方对高尿酸血症小鼠血清和肝脏中XOD活性的影响(n=10)
组别 剂量 (mg/kg) 血清XOD
(u/L)肝脏XOD
(u/g prot)阴性组 − 16.27±1.15 65.34±3.68 模型组 − 26.58±1.46 84.53±4.56 阳性组 5 18.43±1.24 37.38±4.59 低剂量组 220 23.83±1.36 79.63±5.27 中剂量组 440 22.65±1.42 76.14±5.34 高剂量组 880 18.12±1.33* 70.15±5.20* 注:*P<0.05,与模型组比较 -
萆薢降酸方剂量依赖性地降低了URAT1的表达,增加了OAT1的表达。与模型组相比,萆薢降酸方组小鼠URAT1蛋白表达显著降低,而OAT1蛋白表达水平显著升高(P<0.05),见图1。
-
高尿酸血症是临床上痛风和慢性肾炎的主要危险因素。近年来,降低血清尿酸的治疗药物因其不良反应而受到限制。一些研究表明,中药可以下调高尿酸血症小鼠的肝氧化,并促进肾尿酸排泄[3]。为了扭转高尿酸血症早期复杂的病理状态,采用萆薢降酸方促进肾尿酸排泄。与模型组比较,不同剂量组血清尿酸水平显著降低,尿液尿酸水平显著升高(P<0.05)。高剂量萆薢降酸方对高尿酸血症患者血清和肝脏氧化酶活性也有显著影响(P<0.05)。越来越多的临床报道表明,高尿酸血症不仅与痛风有关,还与慢性肾炎和肾功能不全有关[4]。尿素氮和血肌酐水平是肾功能的有用指标,肾脏损害伴随着尿素氮和血肌酐的增加,表明尿素和肾功能下降[5]。与模型组相比,不同剂量的萆薢降酸方能显著抑制BUN和血清Cr水平(P<0.05),相反,萆薢降酸方诱导的尿液Cr水平是模型组的3倍左右。尿酸排泄是萆薢降酸方的主要调节因子,URAT1和OAT1在尿酸处理中起着重要作用[6]。URAT1是尿酸盐重吸收的重要因素,调解尿酸的一个药物靶点。OAT1介导主动摄取有机阴离子,并通过ATP动力转运器和双向交换器控制尿液的最终排出[7]。为了探讨萆薢降酸方增加尿酸清除率的作用机制,本文研究了萆薢降酸方对尿酸(URAT1)和氧化物(OAT1)活性的影响。萆薢降酸方对高尿酸血症小鼠肾组织中URAT1蛋白表达有剂量依赖性的抑制作用,并增强 OAT1蛋白的表达(P<0.05)。这些结果与萆薢降酸方促进尿酸排泄的作用是一致的,也提示萆薢降酸方抑制了由尿酸和OAT1信号转导靶点介导的尿酸的积累和尿量的减少。
Effect of Bixie deacidification fang on hyperuricemia mouse model and its effect on the expression of renal urate transporter
-
摘要:
目的 研究萆薢降酸方提取物对高尿酸血症小鼠的抗高尿酸血症药效作用及其对肾脏蛋白的转运机制。 方法 采用氧嗪酸钾致高尿酸血症小鼠模型,观察萆薢降酸方提取物对高尿酸血症小鼠的影响。以220、440、880mg/kg的剂量,连续10 d,以别嘌醇(5mg/kg)为阳性对照。采用比色法测定血清、尿酸、肌酐水平。同时用Western blot法分析肾脏尿酸盐转运蛋白1(URAT1)和阴离子转运蛋白1(OAT1)的蛋白质水平。 结果 与模型组比较,高剂量萆薢降酸方可抑制血清中黄嘌呤氧化酶(XOD)活性(18.12±1.33u/L)和肝脏活性蛋白(70.15±5.20u/g)(P<0.05),降低血清尿酸(2.04±0.64mg/L)(P<0.05)和血清肌酐(0.35±0.18mol/L)尿素氮(8.83±0.71mmol/L)(P<0.05);升高尿酸(38.34±8.23mg/L)和尿肌酐(34.38±1.98mmol/L)水平,URAT1表达水平下调,OAT1表达水平上调(P<0.05)。 结论 萆薢降酸方可能通过上调OAT1蛋白表达促进尿酸排泄、下调URAT1蛋白表达抑制尿酸重吸收的双重调节功能来促进尿酸在肾脏中的排泄。 Abstract:Objective To investigate the anti-hyperuricemia effects of Bixie deacidification fang on hyperuricemia mice and its mechanism of renal protein transport. Methods The effects of Bixie deacidification fang were investigated on hyperuricemia mice induced by potassium oxonate. Bixie deacidification fang was administered to hyperuricemia mice daily at doses of 220, 440 and 880 mg/kg for 10 days, and allopurinol (5mg/kg) was given as positive control. Serum and urine levels of uric acid and creatinine were determined by colorimetric method. Simultaneously, protein levels of urate transporter 1 (URAT1) and organic anion transporter 1 (OAT1) in the kidney were analyzed by Western blot. Results Compared with the model group, high-dose of Bixie deacidification fang inhibited xanthine oxidase (XOD) activities in serum (18.12±1.33 u/L) and that in liver (70.15±5.20 u/g protein) (P<0.05), decrease levels of serum uric acid (2.04 ± 0.64mg/L) (P<0.05) and serum creatinine (0.35±0.18µmol/L) and blood urea nitrogen (BUN)(8.83±0.71mmol/L) (P<0.05), ncreased levels of urine uric acid (38.34±8.23mg/L), urine creatinine (34.38±1.98mmol/L), down-regulated of URAT1 and up-regulated of OAT1 protein expressions (P<0.05) in the renal tissue of hyperuricemia mice. Conclusion Bixie deacidification fang recipe may promote the excretion of uric acid in the kidney by up-regulating the expression of OAT1 protein to promote the excretion of uric acid, and down-regulating the expression of URAT1 protein to inhibit the reabsorption of uric acid. -
Key words:
- Bixie deacidification fang /
- hyperuricemia /
- renal urate transporters /
- uric acid /
- creatinine
-
药物利用研究(DUR)是促进用药安全、有效和经济的重要手段[1]。随机对照临床试验(RCT)作为评价药物安全性、有效性的金标准,在外推至日常诊疗环境时往往面临挑战。作为RCT的重要补充,真实世界研究(RWS)考察日常诊疗环境中产生的真实世界数据(RWD),注重评价药物使用的“安全性”和“有效性”,已经成为药物利用研究的热点[2]。RWS着眼于应用到医疗实践环境中,大大缩短了试验周期、降低了成本,真实世界实效性临床研究更加易于获取全面的病例数据,使其结果更具有可靠性及可行性[3]。应当正确认识两者关系,将两者作为互补且相辅相成的研究方法和手段来为药物利用评价和监管评价等方面提供循证支持[4-7]。
随着医院管理信息系统(HIS)的高速发展以及高新传感器技术在生物医疗领域探索运用,使得逐步精准化、数字化患者的各项检查及健康诊疗数据成为现实,并进一步完善患者诊疗、实验室检查以及用药信息等全生命周期的医疗记录,且便于追溯及交互关联[2]。尽管数据库技术及大数据挖掘服务于药物安全性、有效性等方面研究成为现实,但应用于DUR尚缺乏具体的技术指导方案、自然流程等。本研究借鉴国内外RWS在药品器械上市后适应证开发及安全性评价方面的做法,梳理DUR中RWS有效技术手段和方法路径,为RWS更好的服务于DUR提供借鉴和参考。
1. 相关概念
DUR是按照预定的标准,评价、分析和解释一个给定的医疗卫生制度下药物利用的模式、质量、影响因素和结果,着重于药物的市场销售、分配、处方和使用情况,强调由此产生的医疗、社会和经济方面的结果。广泛应用于药物流行病学、抗菌药物管理、药物监测、药物警戒等方面的研究。2020年4月,国家药监局发布《真实世界证据支持药物研发与审评的指导原则(试行)》[8],对RWD、真实世界证据(RWE)以及RWS等概念做了相关阐述[8-9]。RWS作为实现从RWD到RWE的有效手段,是连接两者的桥梁[10]。然而,大规模的数据并不一定就能产生有价值的证据,只有通过适用性评估的RWD、分析得出医疗产品的使用和潜在收益或风险的临床证据时才有可能使数据转变为证据[11-12]。数据适用性即从数据使用者角度出发,评价数据满足使用者需求的程度[13],强调数据质量在开展相应RWS方面的可应用程度[14]。
2. 真实世界药物利用研究现状
2.1 真实世界研究与药物利用研究结合现状
国家药品监督管理局自2014年起就陆续出台多项措施,支持RWS用于医疗器械评价、药物审评、研发及监管决策,完善医疗器械不良事件监测和再评价制度,并联合高校、医联体推进多项试点工作的开展,出台了《真实世界研究支持儿童药物研发与审评的技术指导原则(试行)》[15]等法规文件以推进RWS。目前RWS主要集中在以下3个方面:①药物治疗效果[16-17],RWS在药物疗效、不良事件、安全可靠方面的结果研究,以满足药物对人类临床应答的解释以及推广方面应用;②指南或临床实践[18-20],国内外权威的指南是临床实践的重要参考依据,RWS也可用于协助制定和修订患者治疗方案,而RWE有利于指南更加科学性和具有实践性。此外,RWS还可以用于协助政府部门管理的指导性文件的制定;③经济效益[21-23],RWS应用于卫生经济学中筛选研究和治疗选择等方面,帮助医师制定最优的药物治疗方案,并提供合理的经济成本。此外,RWS在帮助制定个性化医疗政策方面也具有很大的潜力。
2.2 真实世界研究体系现状
国际上,随着药品审评和监管标准的不断提高,越来越多的研究者重视RWS,目前已经形成了良好的研究体系,比如美国的以患者为中心的结局研究所(PCORI)和欧盟临床试验公共注册和结果数据库(EUPAS)。RWS主要集中于:①在研究用药的随机对照试验、观察性研究及实践指南中的应用;②在疾病的发病风险评估、医疗健康保险的应用。目前国内的RWS主要涉及:①在中医方面的应用研究[24-26],包括中药的药物疗效及不良反应的研究;②基于医院信息数据库疾病及其合并疾病的用药特征的分析;③在医疗大数据及循证医学方面的应用[27-29]。
RWS的研究设计和方法学也不断完善,近年来不少国家或国际组织都陆续出台关于RWS的指南以及指导原则,提高了RWS的质量和可靠性,比如美国 FDA[30-31]、欧洲EMA[32],英国NICE[33]。
3. 真实世界研究在药物利用研究中的应用
3.1 真实世界药物利用研究的方法
3.1.1 数据来源及研究问题
RWS收集真实诊疗数据或者基于已经存在的研究型数据库或数据研究平台,建立登记数据库,针对具体研究问题,运用循证医学方法,开展数据分析,从而回答验证假设[34-36]。RWD通常来自于以上一个或多个数据库,包含需要主动收集的数据以及常规诊疗行为产生的临床数据。随着医学大数据的快速发展,一些研究型数据库或数据研究平台也逐步拓展,目前,国内外利用公共数据库如SEER、MIMIC等进行相关研究已成为RWS的重要发展方向。
RWS通常基于研究目的建立研究数据库或数据集,研究要素一般包含目标患者人口学特征、用药信息、门诊、住院信息、实验室检查、治疗转归与结局,以及其他研究目的所涉及到的临床治疗、护理、手术处置等信息。如果数据来自多个不同数据库,还必须通过如患者身份证号码、住院号/检查号、姓名等患者唯一标识码进行辨识和数据关联。如果研究的资料内容涉及到患者的个人信息等情况,还要注意取得伦理学审核以及保护患者隐私[37-41]。真实世界DUR的药品数据通常通过ATC编码来规范,采用用药依从性,限定日剂量(DDD)、平均治疗天数(ATD)、总DDD数、处方年费用等DUR指标[42]。基于药物效果和安全性研究、经济学和药物政策、多个疾病和多个治疗方案的复杂病情分析是当前真实世界药物利用研究的一个热点。
RWS作为一项非随机、开放性、不使用安慰剂的研究。为了挖掘真实的临床医疗环境产生的诊疗数据,应把质量控制作为全局指标来进行把握,并从研究伊始就建立起全面的数据质量控制方案并严格遵守。同时,在研究中详细记录异常情况[43],还要注意数据清洗以及混杂因素的控制,如此才能保证研究证据的质量及等级[44]。
3.1.2 研究人群及纳排标准
RWS人群纳入条件较为宽松,但仍在研究中需要明确与研究目的相关或可能影响研究的因素,以及纳入及排除标准的研究时间段和制定日期。研究通常通过WHO国际疾病分类(ICD-9/10)筛选研究人群。研究人群通常为患有特定疾病的患者、药物使用者(罕见病、孕妇、儿童等)以及患有多种疾病的复杂病例或有多种伴随症状的人群。有时候为解决研究对象以往接受过某种治疗措施可能导致的选择偏倚,还需要考虑遵照首次用药人群的设计[45]。最后,研究者需谨慎纳入和排除标准,以免直接影响研究结果的外推。
研究者应当严格参照PICOTS原则明确的6个关键点(总体、干预、比较对象、结果、时间和场所),同利益相关者一同提出针对研究问题可利用的科学方法[46]。
3.1.3 真实世界药物利用研究设计
观察性研究设计是RWS中广泛使用的设计类型之一[44],常见的有前瞻性观察研究[47]、回顾性队列研究[18,48]、Meta分析[49]等。根据不同的研究目的和研究对象,可以选择适合的研究方法和样本来源,通常需要开展大规模、跨学科的合作,以确保研究结果的可靠性和科学性。RWS设计时要结合研究目的来具体确定研究要素,综合考虑年龄、混杂偏倚和特殊人群、药品ATC编码,以及病历等非结构化数据。设计通常包括以下几个阶段:①定义问题:在研究开始之前明确研究的目的和问题,确定研究的对象、变量和数据采集方式。需要考虑研究的可行性、科学性和意义。②研究设计:根据定义的问题,制定设计方案。明确设计类型、样本容量、数据采集方式、结局指标以及数据分析方法等。③招募研究对象:确定研究对象的选择标准,并依照这些标准进行样本招募。④数据收集和管理:采集所需的研究数据,将收集到的数据进行规范化、清洗、质量控制和审查等处理。⑤数据分析:使用统计学方法进行数据分析,包括描述性统计、回归分析、生存分析和成本效益分析等。⑥结果解释和推广:将研究结果进行整合、解释和推广,发表研究报告和文章,向目标受众,如医师、政策制定者、患者和公众等,传达研究结论和建议。
3.1.4 特征变量及评价指标
RWS设计阶段应该充分了解现有数据的优缺点,并恰当合理的定义并描述暴露因素,尽可能的收集与暴露相关的特征指标。RWS结局指标是评估一种治疗或干预措施在真实医疗实践中的效果和安全性以及相关临床和经济结果的指标。
通常有以下几种结局指标:①主要疗效结局:主要的成果、结果或效果指标。例如,治疗效果、复发率、临床终点事件;②次要疗效结局:主要疗效结局之外的其他疗效结果或事件。如总体存活率(OS)、无进展生存期(PFS)、无病生存期(DFS)、疾病进展时间(TTP)、治疗失败时间(TTF)、死亡率,住院时间等[50];③安全性结局[12,51]:一般采用药物不良反应(ADR)、不良反应发生率(IRs,通常以1000人/年表示)[12]、危险性信号、药物相互作用等;④经济学结局[52-53]:包括成本效益和成本效用评估、日均费用、医疗保险、社会资源利用及患者的自付费用等。
选取结局指标时需要根据研究目的和研究对象,进行目标导向和可行性评估。常规首选应该是临床意义明确和易于全面评估的主要疗效结局,同时可以考虑次要疗效结局和安全性结局作为辅助评估。为综合评估治疗效果和成本并获得系统的经济评估结果,相关经济学方面的评价指标也应该考虑进来。
3.2 统计及敏感性分析
通常对目标患者群体和治疗模式进行描述性统计分析,分析各分类变量的频率、百分比,以及在连续区间尺度上测量的变量平均值、标准差、中位数及范围,有学者应用Kaplan-Meier(KM)生存函数进行相关生存分析[54]。针对研究目标确定分析要素,选用合适的统计分析方法,如卡方检验、logistic回归和多元线性回归等,对治疗结局、暴露因素、协变量数据类型及分布情况进行校正分析。由于所有研究结果基于假设提出,而这些假设往往是推论真实性的依据。研究者需对数据的局限性和问题本质有清晰认识,研究过程中对假设进行调整,评价观察结果对特定假设的敏感度或方向大小上的一致性。
3.3 混杂因素及偏倚控制
3.3.1 混杂因素
RWD来源包含电子病历、医保数据库、生命体征记录、医学图像等,存在许多复杂的混杂因素。混杂因素可能的类型包括个体基线特征、随时间变化的特征、医疗诊断和治疗、环境因素。常见的混杂控制策略包括随机对照、匹配分析、协变量校正、倾向值和剂量反应模型等。除此之外,在实施RWS时,还要注意有代表性的样本选择,对数据质量和分析偏倚进行评估和控制,以获得准确和可靠的研究结论。
3.3.2 偏倚控制
RWS是在真实临床环境下进行的研究,目标人群的治疗措施因非随机分配影响内部真实性,虚弱个体治疗措施与结局之间的关联性等,使得其研究结果可能存在一定的偏倚,这些偏倚可能影响研究的可靠性和有效性。常见的偏倚类型包括选择性偏倚、信息偏倚[55]、报告偏倚、记忆偏倚等,常见的偏倚控制方法有模拟试验、设计分层、倾向值匹配、重复量表、级联分析等。
4. 展望
真实世界DUR作为一种新兴的药物评价方法,可将从真实世界环境下收集和分析的大量数据利用起来,通过实效性、回顾性研究使得过往产生的既有诊疗数据进一步提炼成RWE而二次利用。通过研究分析获得的循证医学证据,可以为DUR提供有价值的依据,帮助优化药物使用、个体化医疗、提高患者结局、降低医疗费用、促进医学的健康发展;也可采用前瞻性研究大样本或特殊人群,为其更好、更安全有效用药提供证据。
同时,RWS也是评价药物滥用的有效手段。随着大数据和医疗技术的不断发展,RWS将会成为药物治疗效果、患者治疗策略和临床实践方面重要的研究领域,并将不断地推动医药的创新、优化和进步。
值得注意的是,RWS是一项复杂的研究工作,需要具备较强的统计、数据挖掘和医学知识背景,同时也面临着数据质量、缺失值、样本匹配和结果影响因素多等问题。因此,在实施RWS时,需要有效的科学设计、广泛报告,同时进行敏感度分析和可能存在的偏差分析,为制定更加科学和有效的药物治疗方案提供科学支持。
-
表 1 萆薢降酸方对高尿酸血症小鼠尿酸、肌酐及尿素氮的影响(n=10)
组别 剂量(mg/kg) 血清UA(mg/L) 尿液UA(mg/L) 血清Cr(µmol/L) 尿液Cr(mmol/L) 血清BUN (mmol/L) 阴性组 − 1.42±0.18 35.25±5.73 0.29±0.11 41.56±3.42 7.58±0.85 模型组 − 6.13±0.76* 12.68±4.79* 0.95±0.38* 17.33±4.68* 16.43±1.13* 阳性组 5 1.85±0.37 19.26±5.28 0.34±0.22 24.26±3.32 9.37±1.14 低剂量组 220 3.73±1.1# 19.79±6.21# 0.56±0.21# 18.13±2.79 13.38±0.68# 中剂量组 440 2.85±0.91# 28.65±7.55# 0.45±0.21# 26.72±3.02# 11.37±0.74# 高剂量组 880 2.04±0.64# 38.34±8.23# 0.35±0.18# 34.38±1.98# 8.83±0.71# 注:*P < 0.05,与阴性组比较;#P< 0.05,与模型组比较 表 2 萆薢降酸方对高尿酸血症小鼠血清和肝脏中XOD活性的影响(n=10)
组别 剂量 (mg/kg) 血清XOD
(u/L)肝脏XOD
(u/g prot)阴性组 − 16.27±1.15 65.34±3.68 模型组 − 26.58±1.46 84.53±4.56 阳性组 5 18.43±1.24 37.38±4.59 低剂量组 220 23.83±1.36 79.63±5.27 中剂量组 440 22.65±1.42 76.14±5.34 高剂量组 880 18.12±1.33* 70.15±5.20* 注:*P<0.05,与模型组比较 -
[1] 谭唱. 萆薢除痹汤对于高尿酸血症模型血清尿酸及小鼠肾脏尿酸转运盐蛋白OAT1、URAT1 mRNA表达的实验研究[D]. 南京: 南京中医药大学, 2014. [2] 耿露源, 王守富. 高尿酸血症中医药治疗进展[J]. 中医研究, 2017, 30(2):68-72. doi: 10.3969/j.issn.1001-6910.2017.02.30 [3] 梁国强, 尤君怡, 马奇翰. 吴门三黄汤对高尿酸血症大鼠模型防治作用研究[J]. 辽宁中医药大学学报, 2019, 21(8):26-30. [4] 沈桂芹. 降尿酸方对高尿酸血症大鼠作用机制的研究[D]. 沈阳: 辽宁中医药大学, 2018. [5] CHEN J H, CHUANG S Y, CHEN H J, et al. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study[J]. Arthritis Rheum,2009,61(2):225-232. doi: 10.1002/art.24164 [6] CHOI H K, FORD E S. Prevalence of the metabolic syndrome in individuals with hyperuricemia[J]. Am J Med,2007,120(5):442-447. doi: 10.1016/j.amjmed.2006.06.040 [7] 吴燕升, 贺斐, 高建东. 尿酸诱导氧化应激致肾损害的实验研究进展[J]. 中国中西医结合肾病杂志, 2016, 17(2):162-164. -